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Abstract

This dissertation deepens research into interfaces that supplement input the

user transmits to the computer intentionally with an auxiliary channel describing

ongoing brain activation. Existing implementations of such implicit brain-computer

interfaces (BCI) depend on machine learning algorithms trained to distinguish phys-

iological signals detected with functional near-infrared spectroscopy (fNIRS) under

different task conditions, which subsequent chapters will refer to as neuracles. When

calibrated to the user’s brain, the implicit BCI adjusts settings in the interface to

better match the mental state that has unfolded. Because this approach does not

depend on an understanding about the relationship between fNIRS signals and phys-

ical activity in the brain, I will refer to the current methodology for studying and

building implicit BCIs as the agnostic paradigm. Experiments evaluating implicit

BCIs in the agnostic paradigm have led to measurable improvements in user perfor-

mance in a number of controlled laboratory experiments.

This dissertation introduces a descendant of implicit BCI, referred to as a

bidirectional BCI. Instead of adapting the interface to match the mental state that

has unfolded, a bidirectional BCI strives to adapt outputs to the brain to stimulate

and maintain optimal mental states for its user. This new class of BCI depends on

discovering a model for the interaction between brain and computer at four levels of

analysis. Such a model should account for how the brain works at the physical level,

the linkup between brain state and mental state at a mental level, the relationship

between brain state and sensor data at the neuracle level, as well as how computer

settings and output affect the physical state of the brain at an interface level. With

a synchronized model at these four levels, a bidirectional BCI can establish a feedback

loop between the user’s brain and its methods to affect the brain’s state, and deploy

machine learning algorithms to adjust output to the brain to coerce and sustain

desirable mental states.

But bidirectional BCIs are not possible with the existing agnostic paradigm.

This dissertation therefore develops an alternative method, which has a synchronized

understanding of brain-computer interaction at physical, mental, neuracle, and in-
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terface levels. Scientific progress towards physical neuracles depends on methods

for studying one’s own brain as a scientist and engineer as well as the brains of

other lucid individuals synchronized on a common vocabulary for describing mental

states. This alternative methodology is facilitated by the Neuracle software dis-

tributed as part of this dissertation, which consists of interfaces, visualizations, and

signal processing algorithms needed in a physical paradigm for BCI.

This dissertation makes several contributions to the study of Brain-Computer

Interfaces. Together, the following chapters

1. Extend existing unidirectional models for BCI to a bidirectional modality.

2. Define a physical paradigm for BCIs, which does not depend on machine learn-

ing to measure the user’s cognitive state.

3. Distribute software that enables an introspectively oriented methodology needed

in the physical paradigm.

4. Identify methods for influencing the state of the brain by altering the pre-

dictability of information coming from the computer.
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Philosophical foreword

A miracle has unfolded on Earth. A tribe of biological machines has woken up at

the tail of a long and possibly mechanical sequence of events. Its current generation

is unified by a code that has iteratively adjusted for the duration of the universe.

Each scale of the code — particle, atomic, chemical, biological, neural, cognitive, and

beyond — consists of objects which interact with each other and in so doing embody

physical procedures for ordering chaos. The stable configurations at the micro-scales

sets the rules for the possible objects at the larger scales, whose interaction can paint

complex realities, like compounds, cells, neural networks, languages and society.

Although astonishing, the complexity at these higher order scales is not miraculous.

The miracle is that we are able to behold and be astonished by this complex-

ity. Mysteriously, computation defined in human DNA and instantiated in the brain

leaves an associated tingling mental sensation that registers subjectively, spawning

or feeding some host that controls itself, seemingly of its own free volition. The

spirit of the energy may have existed eternally, or else it may be a byproduct of

evolution [37], condemning its successive generations to feel the pain of failing to

outsmart the other forces of nature.

Although the origin of consciousness remains a mystery, select instances of

human DNA understand the essence of how biology encodes intelligence, and can

prove this understanding by reproducing aspects of thinking on machines. This lin-

eage of intelligent thinkers originates with Alan Turing and has shaped the contents

of this dissertation. Both cognitive and computer science begin with a conception of

intelligence as a productive mapping between inputs and outputs, defined by code

realized in physical space. Conceptually, little is required to achieve simple intelli-

gence. Turing Machines depend on no more than a memory tape that is divided

into cells which a symbol manipulator can read, write, and navigate condition-

ally depending on a cell’s currently inspected content. Turing first demonstrated

mathematically that his simple model could embody any procedure expressed as

algorithmic symbol manipulation. Pressured by the second world war, Turing later
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implemented his abstractions in physical space as one of the world’s first computers,

and programmed it with algorithms that deciphered encrypted German signals.

Turing’s computer simulated the thinking operations performed by contem-

porary human code-crackers, doing their jobs more efficiently. Before he died, Turing

postulated that computers could be programmed to perform the entire spectrum of

intelligences enacted by humans [129]. As he predicted, progress in A.I. advanced

steadily in the 20th century, maturing into algorithms that replicate the most fun-

damental feat of the human brain: to learn from experience. Like the cognitive

structures implemented in the brain, machine learning algorithms use data to iden-

tify efficient mappings between inputs and outputs. The algorithms improve over

time given more data, and are often generalizable so that the same algorithm can

solve many different problems. For example, a neural network designed to classify

buy-sell orders from financial market data need only be tweaked slightly in order to

classify mental states from streaming neuroimaging data.

Contemporary human civilization thus possesses a generic algorithm that can

be repurposed to solve problems for which there exists a corpus of data describing

the correct output from a set of inputs. When the algorithm outperforms its human

competitor, it can be installed at scale, and replace entire sectors of the economy. For

example, A.I. has learned how to operate vehicles autonomously by observing human

drivers steer and brake conditionally based on video, gps, and other input data. As

the century continues, it is possible that computers will defeat human intelligence

in every game, until Earth’s biological citizens face a challenging dilemma: accept

cognitive inferiority to the machine, or augment cognition in some sort of brain-

computer interface.

If humans are to enjoy their next epoch, the A.I. and its designers must

consider the delicate nuance of the human condition. Although humans may want

to stop performing certain types of boring computation, it is not altogether in the

interest of mankind to relinquish computational duties over to the machine – for

a miracle has unfolded on Earth. Humans generate conscious experiences when

they compute. If the forces of the planet cease encouraging the computation of its
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human agents, then consciousness in those agents will withdraw, no longer connected

to present moment experience. Humans may thus be relieved of their burdens, but

risk regressing into the mind wandering of their brain’s endogenous default mode, a

detached home for consciousness.

This dissertation aims to identify methods for describing consciousness to

machines, as well as methods to alter the quality and richness of mental states for

humans. I argue that the primary dimension of consciousness indexes the current

level of entropy in multiple independent networks who compete for a finite energy

supply. When humans engage their external environment, consciousness fixates

in exogenous task-positive networks that process information from the senses and

execute intelligent motor responses as speech and movement. If these networks

support productive representations for the current state of the environment, the

brain can execute mappings between perception and action with low energetic cost.

In this case, control of the energy supply is granted to endogenous resting, or default

mode network, which generates a stream of thought that is not relevant to the

immediate processing demands of the environment. Activity in these two networks

is therefore anti-correlated in neuroimaging data. Attention has been estimated to

be evenly distributed between these networks, but individuals generally report a

strong preference for activity in their exogenous task-positive networks [77].

This dissertation argues that functional near-infrared spectroscopy (fNIRS)

can measure the reciprocal back-and-forth activation between exogenous and en-

dogenous networks, enabling a brain-computer interface (BCI) that adapts the

stream of information to the brain in a bidirectional feedback loop with this measure-

ment. Such a bidirectional BCI can dynamically adjust system variables that dictate

the cognitive burden the exchange of information poses on the user’s exogenous task-

positive networks, minimizing undesirable endogenous default mode network activity

in a population whose computation is no longer enlisted.

As illustrated in figure 1, the seven chapters of this dissertation unfold a set

of ideas towards how to build such a bidirectional bci.
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Figure 1: The Chapters of this Dissertation
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Chapter 0

Introduction

0.1 Implicit BCI in an Agnostic Paradigm

The brain-computer interface research in this dissertation originates from a multidis-

ciplinary field at the intersection of computer and psychological sciences. Research

in human-computer interaction investigates channels of input and output between

the human and computer, as encoded by a program’s user interface. In this context,

a brain sensor can be regarded as an additional channel of input to the computer,

supporting a brain-augmented user interface. BCIs can be partitioned into different

categories depending on how the data is used. In an explicit BCI, measurements of

brain activity replace intentional inputs that the user may otherwise give through

a mouse or keyboard. A user may imagine a command (e.g. yes) which has a mea-

surably distinct neural profile from other commands (e.g. no). Explicit BCIs can

have life altering impact for disabled users whose brains can no longer command the

control of their bodies.

In an implicit BCI, measurements of brain activity supplement intentional

input, expanding the bandwidth of communication between human and computer

through an auxiliary channel that indexes the user’s cognitive state. A well-designed

implicit BCI leaves the user unaware of how their brain state affects system settings

as it updates system settings to the user’s advantage while they focus on the task

at hand. Chapter One summarizes implicit BCIs which use functional near-infrared
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spectroscopy (fNIRS) to measure brain activity, as pioneered by my advisor (Robert

Jacob) and the five dissertations that precede my own contributions. These BCIs

illustrate a common pattern for how to build implicit BCI using fNIRS, which I will

refer to as the agnostic paradigm for BCI. Experiments evaluating BCIs in the agnostic

paradigm begin with a calibration period that changes the user’s task demands in

order to provide labels for data in a controlled setting. The collected data is fed

into a machine learning algorithm that finds patterns separating the conditions of

the calibration period on the basis of brain activity. When trained, the machine

learning algorithm classifies ongoing brain activity in realtime, driving adaptations

to settings in the user interface.

All BCIs depend on this algorithm, which processes as input measurements

from brain sensors and returns as output a classification of the user’s mental state

in real-time for the user interface. In this dissertation, this algorithm will be re-

ferred to as a neuracle. A neuracle is an algorithm which summarizes the state of

an information processing system such as the brain along a set of dimensions. The

etymology of neuracle acknowledges the mythical oracle, an ancient Greek who pre-

dicted human fate. Like an oracle, a neuracle might predict human experience before

it occurs by extrapolating rhythmic oscillations in neural activity.

The suffix of neuracle also recognizes the neuroanatomy of an octopus whose

tentacles continue to live even if severed from its siblings. The octopus brain holds

crucial information for how humans can adapt in an age of machines, and metaphors

for how scientific methodology can adapt if it is to move beyond its current fixa-

tion on physical structures without reference to associated mental events. Scientific

maturation is especially important for the present investigation into technology that

measures and alters conscious states. Although it is beyond the scope of this dis-

sertation to specify the methodology needed to effectively develop and test bidirec-

tional BCIs, Chapter Five describes a software program called Neuracle that enables a

more introspectively-oriented single subject (n=1 ) BCI methodology. Experiments

conducted with Neuracle resonate with participants and experimenters, but do not

conform to typical scientific standards (as advocated by the disciplines of psychol-
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ogy). They maximize the information about the relationship between the current

configuration of inputs to the brain and concurrent mental states only for those who

engage the Neuracle software at the expense of exporting a statistically significant

set of quantitative metrics for a larger scientific audience. The chapters of this

dissertation are organized to gradually unfold ideas towards this new methodology,

leaving a proper specification of what would constitute a scientific result in this new

paradigm to future work.

The first chapter describes the state-of-the-art algorithm for building neura-

cles that drive statistically significant improvements to user performance in a large

and random population of users. This agnostic paradigm for BCI deploys agnostic

neuracles, which are algorithms that do not depend on an understanding of the brain

or sensor, and instead use machine learning to relate sensor data to a behavior set

in place in the experiment’s calibration period. The quality of the neuracle can be

analyzed prior to the main phase of the experiment. Offline evaluation is critical

for ascertaining that the neuracle can predict the user’s mental state on the basis

of physiological data, and iterate upon parameters in the neuracle (such as the fil-

tering, feature set, and machine learning algorithm) when it performs poorly. As

described in Chapter One, this evaluation is typically conducted by training the

neuracle on all-but-one instance in the calibration period which supplies a valid test

case, and repeating this analysis so that every trial is left out exactly once. The

fact that these predictions are better-than-chance constitutes the first thesis of this

dissertation, which is referred to as the agnostic neuracle thesis:

Thesis 0.1.1 Agnostic neuracles can classify the user’s current task on the basis of

fNIRS data at a rate significantly higher than chance.

The second and third sections of Chapter One describe experiments which

use agnostic neuracles optimized for offline classification to drive real-time implicit

BCIs, some of which successfully improved measures of user performance, and others

which failed to produce statistically significant positive effects. In one of the suc-

cessful experiments, the agnostic neuracle powered a dynamic difficulty adjustment
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engine which simplified task demands when the user was determined to be in a high

cognitive workload state [6]. Acting as an air traffic coordinator, the user controlled

the flight paths for a set of unmanned aerial vehicles (UAVs), while the dynamic

difficulty adjustment engine was active or bypassed. When active, the difficulty ad-

justment engine removed simulated UAVs when the agnostic neuracle predicted that

the user was in a high cognitive workload state, and added more work when the user

seemed to have cognitive resources to spare. Overall, users made significantly fewer

errors when the interface partitioned their workload based on brain activity. Chap-

ter One defends the capability to build and evaluate fNIRS-based BCIs as another

thesis statement of the dissertation, which is referred to as the implicit BCI thesis:

Thesis 0.1.2 fNIRS-based implicit BCIs following an agnostic paradigm can im-

prove user performance in controlled laboratory conditions.

0.2 Bidirectional BCIs in a Physical Paradigm

The subsequent chapters move beyond existing research, and are geared towards

establishing a physical paradigm for building brain-computer interfaces. BCIs in the

physical paradigm benefit from a cohesive model of the interactions between the brain

and computer at four levels. The model accounts for

• how the brain works at the physical level

• the linkup between brain state and mental state at a mental level

• the relationship between brain state and sensor data at the neuracle level

• how computer settings and output affect the physical state of the brain at an

interface level.

A unified model at these four levels enables a new genre of BCI introduced

as part of this dissertation. Like an implicit BCI, a bidirectional BCI depends on

ongoing classifications about the user’s mental state. However, the bidirectional BCI

does not attempt to adapt itself to better serve the mental state that has unfolded.
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Instead, it adjusts properties in a set of output channels to the brain, known to

modulate its state. If the bidirectional BCI has a cohesive model for the user at

the physical, mental, neuracle, and interface levels, then measurements of the user’s

mental state and brain stimulation channels can be linked together in a feedback

loop where the system learns a protocol for sustaining some desirable state in the

user over time. All algorithms, software, ideas and data beyond Chapter Two are

concerned with the problem of how to build bidirectional BCIs in a physical paradigm,

which can be broken into two separate research problems.

1. Neuracle Question What are the components of an algorithm that takes

as input measurements from a neuroimaging device and returns as output a

classification of their mental state?

2. Stimulation Question What properties of output channels between the com-

puter and brain can be adjusted to induce desirable changes in the user’s

mental state?

The chapters of this dissertation investigate these two questions in isola-

tion from each other, but develop a cohesive thread that combines the problems of

measurement and stimulation. This thread pushes BCI research towards a unified

framework for measuring and manipulating a set of neural dimensions in the user,

encoded in an information processing vocabulary. In order to support a bidirectional

BCI in a physical paradigm, these dimensions must satisfy criteria at the four levels

of analysis described above.

• At a physical level, an appropriate physical dimension must successfully delin-

eate two sets of physical configurations for its two extremes.

• At a mental level, the dimension must offer a vocabulary that BCI engineers

can map onto a pair of mental states that feel in opposition to one another.

• At the neuracle level, changes in the dimension at the physical level must be

quantified on the basis of a brain sensor and rendered in real-time to a user

interface.
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• At the interface level, the user interface must determine how to adjust stim-

ulation to the brain in order to bring about more desirable settings to the

dimension.

Motivated by the literature and experiments of Chapters Two and Three,

Chapter Four gives a set of physical dimensions that satisfy the criteria at these

four levels as well as an algorithm for measuring them using fNIRS.

0.2.1 The Bayesian Framework for the Physical Paradigm of BCI

At a physical level, the brain consists of a variety of competitive and collaborative

networks that are layered in a hierarchy. According to the Bayesian brain hypothesis,

the basic goal of any network in this hierarchy is to efficiently predict the causes of

its inputs and to leak only the errors of its prediction as output to its hierarchically

superordinate networks [50]. Together, these networks reorganize perception and

action towards a stable representation of reality and their identity within it.

The imperative to stabilize reality and immortalize identity applies to func-

tional operations at particle, atomic, neuronal, network, inter-network, and phe-

nomenological levels. Each unit supports its own notion of reality and identity, in-

cluding the unit that emerges when all parts interact. At this global level, identity

resides principally in the hierarchically superordinate endogenous networks, whereas

reality is a construct computed by exogenous networks more immediately tethered

to inputs from the body, the sense organs, and the other sources of information in

the universe [50].

For the exogenous, sensory networks, the mapping between inputs and out-

puts begins with primitive structures that transduce physical signals originating

from the environment (light, sound, and other energy) into a corresponding inter-

nal representation. These networks contain all the raw information that the body’s

sense organs (eyes, ears, etc.) are able to physically register, but they successively

forfeit the full resolution of the signal as they transmit data up to superordinate,

more endogenous networks [83]. Low level networks compress the sensory data to
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satisfy the uncertainty of superordinate networks, leaving only the essence of the

representation for conscious inspection: a sensorium that is shaped both by new

data and the brain’s prior expectation.

In the Bayesian brain, computation (or energy consumption) must concen-

trate in networks that resolve the meaning and implication of informative signals.

In order to maximize computation in the exogenously oriented brain, a signal should

contain enough familiar content to engage vast and disparate networks, but enough

new information so that these networks must adjust internal representations in order

to effectively predict the causes of its input in the future. In this dissertation and

in related work [27], the physical dimension quantifying this information theoreti-

cal spectrum is referred to as entropy. A high entropy network is surprised by its

inputs, and undergoes many changes in its underlying neural state space, whereas a

low entropy network is already at a stable equilibrium with its inputs, leaving more

leftover energy for other networks.

As a dimension for measurement and manipulation in a bidirectional BCI,

neural entropy satisfies the principal criteria delineated above at physical, mental,

neuracle, and interface levels. Stated as the unity thesis of this dissertation,

Thesis 0.2.1 The spectrum of states in between the brain’s stable and novel con-

figurations have differentiable physical neural signatures that are mirrored in an

introspectively observable mental workspace, which can be monitored by neuracles

classifying physiological changes associated with the activation of neural networks,

and which can be controlled by adjusting the amount of information transmitted to

the brain in a user interface.

The unity thesis binds the seven chapters of this dissertation, establishing a

context for building bidirectional BCIs in a physical paradigm. In the chapter orga-

nization of this dissertation and its underlying history as a sequence of intuitions

morphing over time, this new context has developed to address key shortcomings in

the existing agnostic paradigm for BCI.

Chapter Two highlights shortcomings with the agnostic approach, which must
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be addressed if BCIs are to function outside of controlled, laboratory settings. This

chapter illustrates how the dimension of entropy exposes a problem for the state-

of-the-art agnostic methodology for constructing neuracles. If the signature token

of a salient mental state is its novelty, then there should not exist some static

experimental procedure for inducing differentiable mental states, since each time

segment of measured neural data should have a unique signature for each user and

under different task inductions. Because the theory of neural entropy simultaneously

explains limitations with the agnostic paradigm and opportunities for the physical

paradigm, Chapter Two creates a bridge between existing research and the novel

ideas of this dissertation, which is referred to as the entropy thesis.

Thesis 0.2.2 Neural entropy poses a problem for agnostic neuracles and an oppor-

tunity for physical neuracles as a property to be detected in the user.

0.2.2 Anti-correlated networks as a basis for Physical Neuracles

Chapter Three provides an empirical foundation for measuring neural entropy using

physical neuracles in fNIRS data. This theory is inspired by the neuroscientific

discovery of anti-correlated networks in fMRI neuroimaging data. This literature

suggests that the endogenous, identity networks and exogenous, reality networks are

separated in space and compete for a finite energy supply [108].

The back-and-forth mental activity between the endogenous and exogenous

brain can also be confirmed at a mental level through conscious introspection. Con-

sider your phenomenology while driving a car. While operating a motor vehicle, the

problem of executing a series of adjustments to the steering, brakes, and speed of a

car in response to changing road and traffic information is solved by the exogenous,

task-positive brain. At times, such as during periods of heavy city traffic, conscious-

ness fixates on the immediate task of driving the car. However, when you enter

an empty country road, the demand for novel computation in the exogenous brain

diminishes. In this case, energy is liberated for the other computer which solves

problems that do not pertain to the immediate task and sensory experience. This
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endogenous, default-mode network registers mentally as a sequence of memories,

worries, and fantasies — or mind wandering.

This basic neuroanatomical feature of two independent computers in the

brain exposes a hack for measuring the exogenous neural entropy that is the result

of the computational demand of the task or environment. If the BCI independently

interrogates the activity of both computers, then it has two points of truth for a

single description of the user’s mental state as a phenomenon that is somewhere

on a spectrum between detached mind wandering and sensory-motor immersion.

To this end, Chapter Three documents a search for negatively correlated (anti-

correlated) networks in fNIRS data, where the activation of one network implies a

simultaneous deactivation in some other spatially distinct network. This chapter

shows the outcome of a 50-subject 4-session experiment identifying the strongest

anti-correlated network and how it shifts depending on the current task. It is written

to resolve a more specific formulation of the neuracle question given above.

1. What is the relationship between the low frequency oscillations present in

fNIRS time-series and the mental states visited by the brain generating those

oscillations?

An abstract answer to this question is given by the anti-correlated network

thesis.

Thesis 0.2.3 The strongest anti-correlated network in fNIRS data, in between 0.01

to 0.1 hertz, describes user attention as it shifts between a more sensory (or exoge-

nous) mode to a more conceptual (endogenous) mode, and can be minimally mea-

sured by one fNIRS probe by the eyebrow and one by the ear. Properties of this pair

of signals describe the relative neural entropy between external and internal sources

of information.

Chapter Four gives an algorithm for a physical neuracle that extracts thir-

teen statistical properties from two anti-correlated networks and hypotheses for

how these correlate with different mental states. Algorithm 1 shows a preview of
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this physical neuracle, whose logic depends on a theoretical and empirical founda-

tion developed in Chapters Two and Three. The algorithm identifies the strongest

anti-correlated network in fNIRS data, partitions it into cycles, extracts statistical

features on the current cycle, and uses domain expertise to determine mappings

between these dimensions and imperatives for how to adapt an interface (including

when to simplify, continue, and interrupt). Any application can listen to changes

in these design imperatives, providing a convenient abstraction for user interfaces

to upgrade into brain-computer interfaces.

Algorithm 1 Physical Neuracle Preview

procedure PhysicalNeuracle(fnirs)
networks← findPairsOfSignalsWithHighAntiCorrelation(fnirs)
cycles← partitionIntoSegments(networks)
dimensions← extractTemporalFeatures(cycles)
imperatives← getAdaptiveDesignTemplate(dimensions)
return imperatives

By Chapter Five, the dissertation will have:

1. Demonstrated that agnostic neuracles can power full implementations of im-

plicit BCIs in a laboratory context as the agnostic neuracle and implicit BCI

theses (Chapter One).

2. Demonstrated the shortcomings of agnostic neuracles in realistic user settings

as the entropy thesis (Chapter Two).

3. Demonstrated the feasibility to build physical neuracles on anti-correlated

networks as the anti-correlated network thesis (Chapter Three).

4. Given an algorithmic specification that connects physical, mental, neuracle,

and interface levels of BCI in a Bayesian framework as the unity thesis (Chap-

ter Four).

The fifth chapter describes the Neuracle user interface software which in-

cludes the necessary commands, preprocessing, and data manipulation techniques

for building physical and agnostic neuracles and letting them drive adaptations in
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Figure 1: The Neuracle Source Code

experiments. The interface is optimized for rapidly generating experiments and in-

specting their conclusions through visualizations and the classification performance

of neuracles. It is intended to inspire novel methodology and research contexts for

developing BCIs in a physical paradigm that emphasizes n = 1, 2, or 3 person studies,

where each participant is a skilled meditator or introspector of their mental activity

as well as synchronized on a common vocabulary for describing the observable dimen-

sions of their mental activity. As shown in Figure 1, the source code obeys the model-

view-controller architectural pattern (see www.github.com/samhincks/neuracle for

the complete implementation).

0.3 Bidirectional BCIs at the Interface Level

The empirical findings in Chapters Two and Three as well, as the introspective

findings from Chapter Five, provide evidence that the physical neuracle given in
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Chapter Four measures the orientation of user attention. The constraints of the

physical neuracle give a more specific formulation of the stimulation question:

1. Which channels of output from the computer to the brain can be dynami-

cally adjusted based on real-time knowledge about the ongoing information

exchange between the brain’s exogenous and endogenous processes?

Chapters Six and Seven evaluate parameters in output channels to the brain

which are central for their practical inclusion in a bidirectional BCI. Chapter Six in-

vestigates the potential to affect the state of the brain by administering an electrical

current to the forehead, using a century-old technology called transcranial direct-

current stimulation (tDCS). The chapter shows the motivation, methods, and results

in a study investigating the delay between the administration of electrical current

to the brain through tDCS, and concomitant effects on participant performance in

a cognitive workload task. The results indicate a long delay between stimulation

and cognitive effect, implying that binding stimulation parameters to mental state

classifications from fNIRS would be unlikely to augment human performance in a

bidirectional BCI. This negative result is referred to as the tDCS thesis.

Thesis 0.3.1 The delay between the administration of tDCS and measurable changes

in user performance exceeds the short timespan between stimulation and effect needed

to establish a feedback loop in a bidirectional BCI.

Chapter Seven continues with an audio alternative to electrical stimulation.

In a Bayesian framework, music may be regarded as sound riddles for the brain. Mu-

sic occupies a delicate sweetspot between predictability and novelty, giving enough

familiarity to engage top-down circuitry in the brain but containing enough infor-

mation to push error up the cognitive hierarchy, and engage the brain’s deeper

endogenous circuitry (i.e. emotions). Before language evolved, sound functioned

primarily as a vehicle to transmit spatial information to the brain. Potentially, the

audio sequences that register in the brain as music do so because they correspond

to valid movements in time and space. In that case, these sequences would exert
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a greater control over the brain if the sounds moved correspondingly. If the mo-

tion and the sound match, the aesthetics would be preserved, avoiding the nausea

inherent to violating user expectations.

Chapter Seven describes a pilot study evaluating the effectiveness of adjusting

the spatial information of music in a bidirectional BCI. In this pilot experiment,

attendees lay in a hammock in the woods, having specified a desired emotion among

a menu of colors. The experimenters (or music masseurs) then adjusted audio,

olfactory, and tactile sensation to the participants depending on the shared musical

experience, desired color emotion, and more empathic/elusive feedback channels

transmitted over the course of the music massage. The testimony of the participants

underscores the power of spatial music, motivating a deeper and more rigorous

scientific study. The potential to adapt the 3D orientation and motion of sound in

a bidirectional BCI is referred to as the music massage thesis:

Thesis 0.3.2 The spatial information of music is a useful channel for adaptation

in a bidirectional BCI.
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Chapter 1

Implicit Brain-Computer

Interfaces in the Agnostic

Paradigm

Successful implicit BCIs expand the bandwidth of communication between the user

and computer without demanding additional effort. By mapping classifications of

the user’s mental state obtained from non-invasive brain sensors onto a system’s

internal state, these BCIs establish an implicit channel of interaction that supple-

ments direct input the user provides with mouse, keyboard, and other traditional

controllers.

Three interdisciplinary research questions must be solved to build an implicit

BCI.

1. Dimensionalization Question: Along what set of cognitive dimensions can the

user’s mental state be summarized?

2. Portrayal Question: How can these dimensions be extracted on the basis of

non-invasive and low-cost sensors?

3. Interaction Question: How can these dimensions be mapped interactively onto

dynamic system parameters that drive adaptations to the user’s benefit?
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This chapter illustrates a comprehensive solution to these questions, leading

to a variety of implicit BCIs whose effectiveness has been evaluated in controlled

user studies.

1. Section 1 addresses the dimensionalization question from the perspective of

cognitive psychology and neuroscience. It describes the prefrontal cortex and

psychological construct of working memory as well as a principled method for

altering it in an experimental context.

2. Section 2 addresses the portrayal question from the perspective of biomedical

engineering and machine learning. It describes how to interrogate brain ac-

tivity using fNIRS, as well as how to classify the user’s working memory on

the basis of fNIRS measurements. The results of this section give recommen-

dations for how to most effectively set parameters in an agnostic neuracle, and

demonstrate the agnostic neuracle thesis of this dissertation. Agnostic neura-

cles can classify the user’s current task on the basis of fNIRS data at a rate

significantly higher than chance. These results are obtained using the neuracle

software, which will be the focus of Chapter Five.

3. Section 3 describes several experiments that use real-time agnostic neuracles

in order to drive adaptations in two stationary implicit brain-computer inter-

faces. This section shows similar experiments for wearable computers, which

illustrates the potential to use the neuracle web interface to drive real-time

adaptations.

Altogether, this chapter defends the implicit BCI thesis of this dissertation:

it is possible to build an implicit BCI that triggers passive adaptations in a user

interface on the basis of real-time classifications about the user obtained from an

agnostic neuracle. Moreover, these brain-adaptive systems measurably improve user

experience compared to their non-adaptive counterparts, at least in controlled lab-

oratory conditions.
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I refer to the outlined solution as the agnostic paradigm in contrast to the

physical paradigm to be described in subsequent chapters.

1.1 The Dimensionalization Problem

Effective dimensionalization is essential to BCI because without a link between cog-

nitive states and the underlying neurobiological machinery, it would be challenging

to build an algorithm that predicts the cognitive state from brain sensors. If dimen-

sionalization is done properly, then implicit BCI has a small library of dimensions

that are true enough to the basic operation of the brain to show an effect to non-

invasive brain sensors, but far enough away from its bio-mathematical calculations

to transmit meaning to a user interface designer.

The dimensionalization problem is not as important in the agnostic paradigm

as it is in the physical paradigm. This chapter therefore considers the dimensionaliza-

tion problem only from the point of view of classic neuroscience. In this literature,

individual regions of the brain are understood in isolation from each other. Evidence

in favor of this simplification is obtained by noticing that different regions of the

brain show different levels of activity during different tasks as measured by fMRI.

This understanding suffices for the purposes of building agnostic neuracles, whose

machine learning algorithms may discover more precise descriptions between mental

states and brain activity. But Chapter Two highlights shortcomings of agnostic neu-

racles, motivating the need to develop algorithms that classify mental states based

on a physical understanding of the brain (so called physical neuracles). The neurosci-

entific thread of this dissertation will therefore be modernized in Chapters Two and

Three, which will promote models of the brain that lie somewhere in between strict

hardware (biological) and software (cognitive) levels. These modern and evolving

models of the brain are based on functional and structural connectivity analyses of

the brain, and lead to an understanding of brain activity in terms of networks.

The following subsections therefore give minimal neuroscientific specifications

for understanding how to build agnostic neuracles. The remainder of this section
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will describe a region of the brain (the prefrontal cortex), a dimension of cognition

(working memory), and a method to manipulate working memory (the n-back task

to be described in the next subsection).

1.1.1 The Prefrontal Cortex

Occupying a third of the brain’s overall hardware, the human prefrontal cortex

size and energy consumption distinguishes it from brains of other animals. It can

therefore be presumed to perform functions that are central to the implementation

of intelligence, such as language, short term memory, and meta-cognition [130].

In the most general formulation, the PFC functions as an executive in the brain,

integrating information from subordinate networks and delegating responses. The

region is partitioned into lateral, orbital, and medial regions, which are differentially

active depending on the type of information under manipulation. The medial region

processes social data types, including the concept of the self; the orbital regions come

online when inputs carry emotional charge; and the lateral regions process the most

abstract data types. But the functional segregation in the PFC is blurry, and social,

emotional, and abstract data processing overlap with each other. As a unitary

system, the PFC should be conceived merely as an integrator of information.

1.1.2 Working Memory

In the process of integrating bottom-up inputs, the PFC sustains a conscious mental

buffer that holds information that is immediately relevant to the present situation

[13]. This working memory buffer enables its agent to compose thought (in language

and other modalities), plan action, and direct attention.

There are competing models for how working memory operates at software

and hardware levels. Baddeley’s model posits an architecture whereby one domain-

general central executive controls many domain-specific short-term memory buffers

[13]. The underlying storage buffers can be verbal (words and sounds) or spatial

(locations in an environment), or object-related (shape, color, texture). Although

all housed by the PFC, these sub-systems have somewhat different underlying neural
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Figure 1.1: Brodmann areas

implementation. Verbal working memory (induced by an oral n-back) preferentially

activates left-hemisphere speech areas (Brodmann 44). Spatial working memory

activates the right premotor cortex (B.4), and object storage inhabits the ventral

PFC at (B.10) [120, 101]. Current research has not been able to isolate significant

neural distinctions between the task of short term information storage and broader

executive processes (e.g planning, problem solving, and decision making) [98].

1.1.3 The n-back task

In cognitive science and BCI research, the n-back task is the standard method to

induce variable levels of engagement from both verbal and visual subsystems of

working memory [10, 11, 45, 52, 92, 97]. In a visual n-back, the user is presented

with a succession of 3x3 grids where one of the nine boxes is filled, and the user must

indicate whether the box is at the same location as it was n iterations ago (figure 1.2

illustrates a visual 3-back). The audio n-back is similar except the user listens to a

stream of numbers, indicating, upon receiving a new number, the number presented
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n iterations ago. Thus, a 0-back poses no strain on the user’s auditory working

memory, as the brain simply repeats the numbers it hears.

The n-back is useful for the purpose of building agnostic neuracles since it

offers a principled method to manipulate the burden on a user’s working memory.

Experiments in the agnostic paradigm typically begin with a series of n-back trials

of variable difficulty, which gives the agnostic neuracle the opportunity to witness

the brain under different conditions. A given n-back trial lasts between fifteen and

thirty seconds, long enough to induce a neurological response for measurement by

fNIRS. There are typically between seven and fifteen instances of two difficulty levels

of the n-back task, sufficiently many for the machine learning algorithm to extract

a pattern separating the brain under low and high levels of cognitive workload.

To foreshadow a discussion that will be continued in the next chapter, it is

worth reflecting on the relationship between the two dimensions: working memory

and cognitive workload. For now, high working memory should be understood

as always entailing high cognitive workload. But high cognitive workload need

not always imply high working memory. For example, it is possible to enter high

cognitive workload writing states without excessively belaboring working memory:

the words sometimes just flow from the fingers.

The neuracle software package includes both audio and visual n-backs along

with mechanisms for labeling the data by the difficulty (n) and accuracy, as elabo-

rated in Chapter Five. To initiate an experiment with the oral n-back according to a

specified protocol, type streamlabel(easy%hard, seconds%trialsOfEach%secondsOfRest)

in the console. This will broadcast the labels easy, hard, and rest to the data object

that is currently accumulating fNIRS data, and trigger a voice that repeats numbers

for the specified duration.

1.2 Portrayal using Agnostic Neuracles

The previous section outlined the basic function of the prefrontal cortex, the con-

cept of working memory, and a protocol for manipulating its level of workload using
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Figure 1.2: A visual n-back

the n-back. This overview was intended to provide preliminary answers to the di-

mensionalization problem that will be elaborated in Chapters Two and Three. The

knowledge cited so far should be sufficient for establishing the credibility of the ag-

nostic neuracle given below. In order to adequately solve the portrayal problem, this

neuracle must solve three sub-problems (one hardware and two software).

1. Biomedical Engineering Problem Capture physical events associated with

the brain’s computation of cognitive states with scientific instruments.

2. Signal Processing Problem Transform physical measurements over time

into a series of <class, feature> pairings.

3. Machine Learning Problem Identify patterns in <class, feature> pairings

using machine learning algorithms.

1.2.1 Measuring the brain with fNIRS

Most neuroimaging devices are too intrusive, costly, or otherwise inconvenient for

standard Human-Computer Interaction (HCI). However, fNIRS can be used in typi-

cal computer settings as it is resistant to motion artifacts [122, 88], and there are no

hard constraints that limit its future integration in consumer grade electronics [44].

In fact, several labs are in the process of developing a portable fNIRS [117, 43, 111].

Compared to EEG, the more popular device for BCI, fNIRS has poor temporal res-

olution, meaning that there may be a lag time (3-6 seconds) between values it can

detect and the physiological event it endeavors to represent. On the other hand,
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Figure 1.3: Functional near-infrared spectroscopy

unlike EEG, fNIRS has excellent spatial resolution, meaning that it is possible to

resolve what space in the brain it measures.

As shown in figure 1.3, fNIRS consists of a set of light sources and light de-

tectors: parts that can be made cheaply and miniaturized into hidden components

of a hat or wearable [44]. To measure brain activity, near-infrared light at two wave-

lengths (typically 690 nm and 830 nm) is transmitted through the skin and bone

before it is absorbed and scattered by the blood’s hemoglobin, the supply system of

energy for neurons in the brain. Because light interacts differently with oxygenated

and deoxygenated hemoglobin, it is possible to infer the underlying neuronal acti-

vation from the quantity and timing of light returning to a sensor, approximately

three centimeters away [124]. The detector thus outputs ongoing measurements

about the light intensity at each of the two wavelengths, which software converts

into measurements of oxygenated and deoxygenated hemoglobin according to the

Beer-Lambert Law [36].

This gives a barometer of underlying activation in the brain according to

the blood oxygen level dependent (or BOLD) response. When networks of neurons

activate and communicate, they consume the oxygen that is present in order to me-

tabolize glucose, causing an increase in blood flow and the need to replenish their

current supply (leading to an increase in oxygenated hemoglobin). The method for

mapping fNIRS data onto descriptions of neural architecture is similar to the more

widely used functional magnetic resonance imaging (fMRI), which also infers under-
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Figure 1.4: Left Image: The Prefrontal Cortex. Right image: Near-infrared light as
it takes an arc-shaped path 3cm into the brain and back to the detector.

lying activation with the BOLD response. FMRI enables a larger three-dimensional

resolution of the brain, but its price-tag, size, and loud magnetism prevents its

possible adoption in non-invasive BCI contexts.

The experiments in this chapter use the probe placement in Figure 1.3. This

probe configuration targets the brain’s anterior PFC in symmetrical locations at

the left and right hemisphere. The anterior PFC deals with high level executive

processing, which corresponds to storing and retrieving objects in memory, planning,

and paying deliberate attention [35, 75, 91]. Chapters Two and three measure more

locations in the brain.

1.2.2 Agnostic Neuracles using Machine Learning

The calibration, preprocessing, feature extraction, machine learning, and real-time

phases of the agnostic paradigm are illustrated in Figure 1.5. In the calibration

phase, the user’s working memory state is manipulated by a series of n-back trials

with variable levels of difficulty. As described above, this is accomplished with the

streamlabel(easy%hard, seconds%trialsOfEach%secondsOfRest) command in neura-

cle.

When calibration is complete, the experimenter begins the preprocessing

phase by selecting the data object in neuracle, and typing manipulate(filterchoice),
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Figure 1.5: Training an Agnostic neuracle.

where common filter choices include bandpass filters, moving average filters, and

adaptive filters. Next, the experimenter changes the internal representation of

the data from a 2-dimensional series of channels into a 3-dimensional collection of

channel-sets, grouped into trials with a common class by typing split(conditionName).

In the feature extraction and machine learning phase, the experimenter

prepares a feature-set with the makefs(statistic,channel,window) command, and a

machine learning algorithm with the makeml(algorithmName) command. As illus-

trated in 1.6, the experimenter drags the dataset so that it intersects the machine

learning and feature objects, and types evaluate to see how effectively the selected

techniques fared in cross-fold validation at classifying the level (n) of n-back difficulty

given the fNIRS data. When the experimenter is satisfied with this classification

accuracy, they type train, which trains the intersected machine learning algorithm
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Figure 1.6: The Neuracle User Interface

on all the training data.

Next, in the real-time phase, the experimenter types classifyLast(port),

so that new trials are constructed every second on the last trialLength seconds

of the real-time data, and fed into the trained machine learning algorithm. The

classifications occur each second and are broadcasted to applications listening on

the specified port number.

1.2.3 Evaluating Agnostic Neuracles

This section uses neuracle to evaluate basic settings in the agnostic neuracle, answer-

ing the following questions by manipulating one property at a time and holding all

others constant.

1. Channel: In a given window of fNIRS data over sixteen channels, which

channel portrays the most information about the user’s mental state?

2. Time: In a given window of fNIRS data, which segment of time portrayed

the most information about the user’s mental state?

3. Features: In a given window of fNIRS data, which statistical features portrays

the most information about the user’s state?
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4. Machine Learning: In a given set of <class-feature> pairings, which ma-

chine learning algorithm can most effectively classify the user’s cognitive state?

The following offline analysis is done over a total of 46 sessions with 39

subjects collected over four experiments, and demonstrates the agnostic neuracle

thesis. For the purpose of evaluating the cleanest possible data, I focused on half of

the dataset, using the half with the highest average classification accuracy (according

to eight machine learning algorithms operating over all evaluated features, channels,

and time segments).

All experiments tested cognitive workload, and consist of a set of easy and

hard trials in equal quantity (see Table 1.1). The first three experiments were

visuospatial n-back experiments, while the fourth was a cognitive manual task where

users processed visual stimuli and pressed keys accordingly in a timely manner. To

assess both the quality of data and efficacy of different machine learning options,

I conducted 46 leave-one-out crossfold-validations, where the data held out in each

fold was a single trial (30 in three experiments, and 16 in the fourth). The machine

learning algorithm thus built a model over all-but-one trial, whose class (easy or

hard) it predicted, repeating this procedure until every individual trial had supplied

the testing case. In total, this resulted in 1328 ((16+10 +14) × 30 + (8×16)) unique

testing cases; in other words, the listed classification accuracies represent the model

trained and tested on 1328 separate occasions. If the fNIRS data was not indicative

of the trial’s associated class, the algorithm would likely classify roughly half of

the trials correctly, and thus a classification accuracy well-above 50% over many

trials suggests the presence of class-predictive information in the datasets and the

capability of the associated algorithm to discover it.

What follows is a suite of evaluations on different machine learning algorithms

in order to (a) provide basic guidelines for how to build useful fNIRS analysis tools

using the neuracle software package described in Chapter Six, (b) give deeper insight

into what components of the data inform changes in mental state, and (c) make

explicit trade-offs to consider both for the design of experiment and the choice of
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Table 1.1: The experiments analyzed in an agnostic neuracle

Visuospatial
n-back A

Visuospatial
n-back B

Visuospatial
n-back C

Cognitive
Manual Task

Subjects analyzed 16 8 2 14

Sessions analyzed 16 8 10 14

Total subjects 28 16 7 14

Total sessions 28 16 35 14

Trials per session 30 16 30 30

Trial length (sec) 25 40 25 30

Sampling rate (Hz) 11.79 6.25 11.79 11.79

machine learning algorithm. In these results, the absolute classification accuracies

are not as important as the relative accuracies, which indicate the effect of various

combinations and choices of classification approach.

1.2.4 Channels

These experiments were run on an ISS Imagent with 16 channels of fNIRS data

made up of two detectors with four linearly arranged light sources associated with

each detector (see figure 1.3). An analysis of machine learning performance on only

one channel reveals that while all channels are independently informative, there was

little difference between detectors sampling the left versus right PFC nor between

those calibrated to identify 830 versus 690 nanometer reflected light (see table 1.2).

It is however worth noting that the two detectors farthest from the light source

(3.5cm on the left and 3.0cm on the right) had highest single classification accuracy,

which is expected since their positions enable them to sample the deepest neural

tissue, while the shallow channels mainly contain noise and artifacts originating

closer to the skin.

1.2.5 Time Segments

To evaluate where in the time segment information is concentrated, as well as de-

termine optimal blocks for partitioning a trial, neuracle evaluated the performance

of classifiers on individual separate windows of the dataset and multiple aggregated
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Table 1.2: Classification accuracy when only one channel is used
Channel Accuracy

A-DC4 (left, 830, 3.5cm) 66.7%

B-DC8 (right, 690, 3.0cm) 66.6%

B-DC7 (right, 690, 2.5cm) 66.3%

A-DC2 (left, 830, 2.5cm) 64.1%

B-DC6 (right, 690, 2.0cm) 63.7%

B-DC5 (right, 690, 1.5cm) 63.6%

A-DC1 (left, 830, 2.0cm) 63.2%

B-DC3 (right, 830, 3.0cm) 63.0%

A-DC3 (left, 830, 3.0cm) 61.8%

A-DC7 (left, 690, 2.5cm) 61.7%

B-DC1 (right, 830, 2.0cm) 61.2%

A-DC5 (left, 690, 1.5cm) 61.1%

A-DC8 (left, 690, 3.0cm) 60.5%

B-DC2 (right, 830, 2.5cm) 59.9%

B-DC4 (right, 830, 3.5cm) 59.7%

A-DC6(left, 690, 2.0cm) 58.8%

windows of the dataset. In Table 1.3, the first row labels different windows of the

dataset, so that 1/1 stands for the whole time-segment treated as one cohesive unit

and 4/5 stands for the fourth fifth of the dataset, the content starting at the 60th

percentile time-stamp and ending at the 80th percentile. The next row shows classi-

fication accuracies when the algorithm only examines that particular window. These

results suggest that the task-predictive information is insulated towards the end of

the trial, which is consistent with the fact that the measurement technique relies

on the slow movement of blood. The rows that follow show classification accuracies

when many of these time segments are aggregated together. These comparisons

would suggest that it makes sense to partition the data into subsegments, but two

or three suffice. One can partition the dataset into thirds, fourths, or fifths, but this

does not buy the algorithm much new information. Examining the whole, the first

half, and the second half appears to extract the bulk of information.

1.2.6 Features

The second row of Table 1.4 shows the classification accuracies when the machine

learning algorithm is permitted to train on only one statistical description of the
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Table 1.3: Classification accuracy by time segment; o denotes that features are
extracted over this segment.

1/1 1/2 2/2 1/3 2/3 3/3 1/4 2/4 3/4 4/4 1/5 2/5 3/5 4/5 5/5 Accuracy
70.1% 63.0% 66.6% 58.5% 65.5% 66.0% 57.1% 62.5% 64.9% 66.6ˆ 56.5% 60.4% 60.4% 64.2% 65.3%
o o o - - - - - - - - - - - - 74.3%
o - - o o o - - - - - - - - - 72.9%
o - - - - - o o o o - - - - - 73.5%
o - - - - - - - - - o o o o o 73.5%
o o o o o o o o o o o o o o o 74.2%

Table 1.4: Classification accuracy by feature; o denotes that this feature is analyzed
by the machine learning algorithm.

Linear
Slope

Std.
Dev.

Min.
Time
to Peak

Abs. of
Mean

Max. Mean
Abs.
of Slope

Full
Width
At Half
Max.

Second
Der.

Accuracy

66.3 63.6 60.4 59.9 59.3 59.0 58.4 57.5 57.1 46.8

o o 69.0

o o o 69.2

o o o o 71.3

o o o o o 70.8

o o o o o o 70.9

o o o o o o o 71.1

o o o o o o o o 71.4

o o o o o o o o o 72.5

o o o o o o o o o o 73.3

time segment at each channel. The analysis indicates that linear slope (the differ-

ence between the last and first value divided by the number of observations) appears

to be the most informative way to describe the time segment, and the best start-

ing point for analysis. The subsequent rows show accuracies when the next most

independently productive feature is added to the selection. These results reflect the

intuitive phenomenon that describing the trial in terms of more statistical features

(even the least predictive ones) tends to boost accuracy.

1.2.7 Machine Learning Algorithms

Table 1.5 shows a comparison of different machine learning algorithms. Weka’s

support vector machine (with a polynomial kernel and cache (= 1.0) parameters)

outperformed the other algorithms [68]. It is worth noting that I examined different
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Table 1.5: Classification accuracy by algorithm.
Algorithm Average

Support Vector Machine: (Weka SMO) 74.3%

Multinomial Logistic Regression (Weka) 71.7%

Support Vector Machine: LibSVM (Weka wrapper) 67.6%

Adaboost on Decision Stump (Weka) 67.6%

Logistic Model Tree (LMT, Weka) 67.6%

Simple Logistic Regression (Weka) 67.5%

Naive Bayes (Weka) 65.4%

3-Nearest Neighbor (Weka) 64.4%

parameters (Weka’s RBF and Puk kernels, and different sizes for the cache) for the

support vector machine, but no combination of values led to superior results. In

addition, procedures that tailored the selection of kernel and cache to the present

training set using cross-validation had only a negligible impact on accuracy.

This dissertation makes no theoretical contributions to machine learning, and

readers are referred elsewhere for complete descriptions of underlying implementa-

tion (e.g. the Weka source code [68]). But as preparation for subsequent chapters,

it is worthwhile to sketch out the critical intuitions that underlie machine learning,

especially the support vector machine and logistic model tree, as they illustrate im-

portant concepts about how the brain works. The primary aim of this dissertation is

to identify a path forward in BCI that is not as dependent on machine learning algo-

rithms at the neuracle level. However the physical paradigm for BCI will depend on a

greater dependence on machine learning at the physical level, where the brain should

be dimensionalized as a machine learning algorithm, or hierarchical prediction and

error correction engine. With a physical neuracle classifying the spatiotemporal cor-

relates of prediction error in the brain, machine learning card instead be used at the

interface level, where inputs to the brain can be tweaked in a feedback loop with

that classification.

1.2.7.1 The Support Vector Machine

The goal of a support vector machine (SVM) is to find a hyperplane in a k-

dimensional space that optimally separates instances of two classes on the basis
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Figure 1.7: A 2-dimensional support vector machine

of their k features. As illustrated in Figure 1.7, the optimal hyperplane is the one

that has the maximum distance from instances of both classes. When the algorithm

is trained, the support vector machine classifies new instances by computing where

its k features fall relative to the hyperplane. The hyperplane is represented in a

k-dimensional feature space with the function:

f(x) =

k∑
i=1

xiwi + b.

The learning function discovers settings to ←−w and b that optimally separate

the two classes. To accomplish this, the SVM algorithm initializes random settings

for ←−w and b, and creates a simple mapping function y(x) that transforms the repre-

sentation of two possible classes into a positive and negative integer, i.e. all values

below some threshold receive -1 and all above receive 1. If the SVM arrives at a

perfect model for the data, then the product of the weight vector (←−w ) and feature

vector (←−x ) minus b becomes greater than 1 when the class is of one kind and less

than -1 when it is of the other kind. Put in mathematical terms, the algorithm

minimizes the value of the objective loss function

L(x) =
1

2

n∑
i=1

max(0, 1− yi(←−w i
←−x i − b)) + α||←−x ||,

where α is a constant that determines a trade-off between increasing the margin

size and guaranteeing that instances fall on the correct side when classified. Modern
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implementations use gradient descent to incrementally adjust ←−w and b in the cases

when some instance falls on the wrong side of the hyper-plane [16].

The mathematics underlying the internal mechanics of the support vector

machine pave the way for intuitions about how the brain operates. As I will describe

in the next chapter, the brain can also be thought of as a machine learning algorithm

that adjusts internal settings to minimize a loss function (e.g. characterizing the

average amount of surprise of sensory signals). But the brain does not use gradient

descent to minimize entropy, instead relying on the degree to which a neuron is

affected by and affects other neurons as the underlying basis for encoding knowledge.

This more flexible and feature-agnostic approach to learning resembles the neural

network, which has surged in popularity since the original design of neuracle, and is

therefore omitted from this chapter. 1

1.2.7.2 Logistic Model Tree

The intuitions underlying the logistic model tree (the third best algorithm in my

analysis) provide useful and complementary information towards an understanding

of brain activity. The logistic model tree is a standard decision tree that uses

logistic regression at its leaves to overcome an unaugmented decision tree’s risk

of underfitting. The algorithmic strategy of a decision tree matches the Bayesian

approach deployed subconsciously by the brain to selectively attend to features of

the environment.

As with the support vector machine, the decision tree establishes a method to

prioritize certain features above others, singling out those that are most informative

in classification. In an SVM, this filter happens implicitly in the assignment of

weights to features, so that features that receive a weight of zero are eliminated from

consideration. The algorithm for a decision tree ranks features more explicitly by

computing their information gain, which measures how much information a feature

1 Future research may consider integrating neuracle’s Weka-based machine learning infrastructure
with modern approaches, such as Tensorflow, although potential contributors to neuracle should
know that the bottleneck for accurate agnostic neuracles is not within the field of machine learning,
as will be made clear in the next chapter.
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Figure 1.8: A simple decision tree

provides about the class. The algorithm thus favors features that tend to assume a

given value for one class and a different value for another class. Figure 1.8 shows

plausible logic for a decision tree inferred from the fNIRS data analyzed in this

chapter, where the slope of values has the most information and is therefore placed

at the top of the tree.

Information gain is encoded by an equation that captures the change in

entropy from some initial state T to a posterior state that has taken x into consid-

eration:

I(T, x) = H(T )−H(T |x).

A definition and discussion of the equations for computing entropy H(T) will be

saved for the next chapter (Section 2.2).

1.2.8 Offline Agnostic Neuracles

The experiments above show the effect of various parameter and preprocessing ap-

proaches. From this, I can recommend that a trial be broken into segments. For

each channel in these segments, a set of statistical features can be computed. Neu-

racle found the highest classification accuracy when using slope and standard devi-

ation over a segment. For potential performance improvements, additional features

could be added such as minimum, time-to-peak, absolute-of-mean, mean, largest,

absolute-of-slope, full-width-at-half-maximum, absolute-of-slope, and second deriva-
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tive. Using Weka’s SMO support vector machine shows promise, and should be used

to build agnostic neuracles.

This analysis suggests that even rudimentary filtering and attribute selection

approaches can provide reasonable classification accuracy. Future work could focus

on expanding the feature set. In particular, a suite of features that describes am-

plitudes at various frequencies on Fourier-transformed segments may provide com-

plementary information. Other features that better approximate how the segment

changes over time are also promising candidates for a better algorithm. Some of

these candidate features, including frequency domain descriptions and SAX-time-

series representations [84] are included in the neuracle software.

The fact that the reported accuracies are better than chance — as high as

74% when using the support vector machine on all features, channels and time

segments — demonstrates the agnostic neuracle thesis of this dissertation. The next

section will examine the possibility of using agnostic neuracles in real-time, where

their classifications drive adaptations in implicit BCIs.

1.3 Interaction - Implicit BCIs in the Agnostic Paradigm

Implicit interfaces adapt the content, structure, or presentation of hidden or de-

tectable elements without the user’s explicit intention. From the perspective of the

user, implicit input is free: an additional bandwidth of information from the user to

the computer. Because BCI input tends to be probabilistic and error prone, a well-

designed implicit interface never makes drastic changes in the face of uncertainty;

instead, it subtly alters the content or appearance of internal or external data in

a manner that is completely innocuous when the user’s intention or mental state

is miscalculated [128]. The next two sections organize implicit BCIs into two cate-

gories depending on whether the implicit BCI operates in a stationary computing

or wearable computing context.

The experiments evaluating implicit BCI for stationary computers were led

by Daniel Afergan, and a reference to the full description of this work can be found
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Figure 1.9: The Agnostic Paradigm for BCI [6]

in the bibliography at [6] and [7].

1.3.1 Implicit BCI for Stationary Computers

Brain-based adaptations may alter the definition of a user interface at semantic or

syntactic levels [128]. In HCI terminology, the semantic level of a system refers to

the set of internal functions and settings that control its behavior. In a digital text

reader, this refers to, among other entities, the underlying data structures that store

in memory the text to be visualized on the screen. In contrast, the syntactic level

refers to properties governing the interface established with the user. In a digital

text reader, this may refer to the speed at which the visualized text changes when

the user scrolls down.

1.3.1.1 Semantic Adaptations in a UAV Simulation

In an experiment led by Afergan, we evaluated the feasibility of building a dynamic

difficulty adjustment engine by establishing an implicit link between a semantic prop-

erty of a user interface and fNIRS-based classifications of a user’s brain state. Here,

the semantic property was a single variable determining the number of unmanned

aerial vehicles (UAVs) under user control in an air traffic control simulation.

In this experiment and others in the agnostic paradigm, the experiment pro-

ceeded in two phases. In the calibration phase, an agnostic neuracle was trained
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to distinguish between the user’s high and low cognitive workload states. Offline

calibration follows the guidelines and best practices described in section 1.2. Par-

ticipants first completed fifteen 25-second visuospatial 3-backs and fifteen 25-second

visuospatial 1-backs, woven together by 15-second resting periods. Each of the thirty

n-back timeseries were defined by two features (mean and slope), resulting in 32 fea-

tures total for each instance. Thirty instances, each with 32 features, thus supplied

the underlying information for the support vector machine learning algorithm to

construct a model separating the user’s high and low cognitive workload states.

In the experimental phase, the real-time classification of the support vector

machine generated continuous estimates of the user’s cognitive workload state. As

illustrated in figure 1.10, the user was instructed to set a flight path between UAVs

and their target destination by arranging a sequence of points on the screen. To

reach the destination without penalty, the flight path should avoid collision with

objects labeled as no-fly-zones. In order to evaluate the efficacy of brain-based

adaptation, the experiment included two conditions. In the adaptive condition, the

system removed UAVs from user control when they were deemed to be in high

cognitive workload, and added UAVs when they were deemed to be in low cognitive

workload. In the non-adaptive condition, the number of UAVs was set according to

a predefined script that guaranteed an equal amount of total work to the adaptive

condition.

Figure 1.11 shows measured user performance along four dependent variables.

Most notably, brain-based adaptation decreased operator failure rate (as measured

by the number of collisions with no-fly zones) by 35% compared to the non-adaptive

condition.

1.3.1.2 Syntactic Adaptations in a Brain-adaptive Bubble Cursor

In another experiment also led by Afergan, we evaluated the feasibility of changing

syntactic properties of a user interface using brain classification.

Following the guidelines described in section 1.2, we built an agnostic neura-

cle that classified the user’s cognitive multitasking state as he or she completed an
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Figure 1.10: Afergan’s UAV simulation

artificial point-and-click task intended to assess the effectiveness of a mouse expan-

sion technique known as bubble-cursor (see figure 1.12). Interfaces implementing

the standard bubble-cursor target expansion technique guarantee that the element

nearest the mouse-pointer is always selected [56]. In our brain-adaptive version of

bubble-cursor, the element selected was a function of its proximity to the cursor as

well as the user’s brain activity.

The experiment began with a calibration period where the user performed a

task in two different difficulty settings, while their brain state was measured using

fNIRS. A support vector machine was trained to differentiate the mean and slope

of the fNIRS time-series pertaining to the two conditions, leading to an agnostic

neuracle prepared to classify the user’s current level of cognitive workload.

In the main phase of the experiment, the user completed two parallel tasks.

As their primary task, the user repeated numbers they heard at a delay (n) in an

n-back. The primary task changed the difficulty of the n-back by increasing the

delay at which numbers were to be recited. As their secondary task, the user was

given a sequence of uppercase and lowercase letters which they were instructed to

locate on-screen. The uppercase letters had a higher priority than the lowercase

letters, which they could skip without major penalty. In the adaptive condition of
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Figure 1.11: These four dependent variables show significantly better performance
in the brain adaptive condition (p < 0.05). Each line represents a subject.

Figure 1.12: Screen capture of bubble-cursor target expansion

the experiment, the uppercase letters were made easier to select when the agnostic

neuracle classified the user to be in a high cognitive workload state. The adaptive

condition was compared to conditions with no expansion (where the bubble cursor

feature was off) and static expansion (where the bubble cursor was active but did

not change based on brain activity). Compared to the non-brain conditions, the

adaptive condition entailed significantly improved user performance on every de-

pendent variable measured: most notably the combined score in the simulation as

well as the n-back performance (see figure 1.13).

The fact that these two experiments both showed significant improvements

to user performance when semantic or syntactic properties of the interface changed

based on real-time brain activity demonstrates the implicit BCI thesis of this dis-

sertation.
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Figure 1.13: Left: Movement time for uppercase letters by expansion condition.
Right: Points by expansion condition [7].

1.4 Implicit BCI for Wearable Computers

Implicit BCIs for wearable computers serve a different role than for stationary com-

puters, enhancing usability in products whose function is to facilitate (and not

replace) the user’s ordinary interaction in the world. Head-mounted wearables such

as Google Glass own a tiny share of real estate in the user’s visual periphery, where

they can broadcast on demand information depending on the user’s location or

task [123]. This emerging genre of human-computer interaction creates an intimate

bond between user and computer that can also be disruptive, especially if the device

mistimes its output, clutters and confuses, or in any way interrupts the user as she

engages with other demands imposed by the real world. Well-designed applications

err on the side of not interrupting the user. Even better would be applications that

leave this decision to in-the-moment probabilistic calculation, and throttle notifica-

tions when the user’s present situation or mental state appears unlikely to benefit

from its content. In this section, I first investigate the space of possible implicit BCIs

for wearable computers and then prototype two user interfaces that rely on passive

input to alter notifications and content in consumer-grade wearable computers.
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Figure 1.14: Five methods for using physiological data as input to head-mounted
computers, with sample use cases.

1.4.1 The when, how, and what of wearable notification streams

Unlike traditional computers that ‘own’ the user’s attention, wearable computers are

companions to the real world: digital assistants, whose utility hinges on successfully

relaying context-specific information [20]. At any given moment, an active applica-

tion must judge whether present circumstance warrants introducing information to

the user’s visual field, and if so, its content and format.

When the system has arrived at the decision to interrupt, it can further

customize relevant parameters such as the content, level of detail, the minimality

of design, and medium of presentation in accordance with the user’s mental state.

For example, it could swap between oral, written, and visual formats for route rec-

ommendations, capitalizing on the fact that working memory appears to support

distinct (and parallel) processing units for these modalities [14]. In keeping with

general design principles for implicit interfaces [128], these adaptive wearable ap-

plications should never shock the user; nor indeed, given their tendency to err, let

the user in on the ‘secret’ that a probabilistic mental state estimate has changed

some aspect of the interaction. Mission-critical information should never be held

back nor erratically switch formats. Instead, well-designed implicit interfaces would

target non-essential or time/context insensitive information for adaptation. For ex-

ample, a turn-by-turn navigation system would not drastically alter how or when it

displayed an impending turn, but it could use its estimates to dictate the display of

nearby gas stations, the presence of roadside attractions, or speed limits.
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1.4.2 User Discovery

When navigating the web, a user leaves a rich cyber-trail that exposes their per-

sonality, mood, and preferences. Research into recommender systems has optimized

methods for translating web interactions (e.g. clicking a link) into valuable mod-

els of the user. For example, Twittomender uses tweets and existing followers to

recommend new followers [59] and Tagommender combines both user’s search and

rating history to infer a user’s preference for tags and other movies [114].

fNIRS-based predictions of the user’s preference have been used to augment

movie recommendation algorithms [103]. Designed to avoid prolonged sessions of

device interaction, wearable computers must incorporate other means than click-

ing links for user profiling. Wearables tend to remain active even when not used,

as well as support a variety of sensors (e.g. camera, GPS, microphone), opening

several channels for context sensitivity [39]. With concurrent physiological sensing,

data from the environmental sensors could be timestamped with predictions about

the user’s mental state, and estimate the places, people, tasks and time periods

associated with mental idleness, working memory engagement, positive emotion, fo-

cus, and mind wandering. These datapoints could inform targeted advertisement,

recommendations, or could be related explicitly to the user in the form of a cog-

nitive/emotional heatmap that associates space, time, and images with a current

prediction of the mental state. It is important that these systems are scrutinized by

benign scientific supervision, and are designed to promote human wellbeing.

1.4.3 User Interface Experiments

This section describes two previously unpublished implementations of implicit BCIs

for wearable computers. The prototypes are tested on a small number of partici-

pants, and the purpose is to illustrate the parts of a complex system as opposed to

evaluating significant results. The systems were built using the software Neuracle dis-

tributed in Chapter Six (and available online at www.github.com/samhincks/neuracle).
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Figure 1.15: System architecture for Neuracle and implemented Glass prototypes.
fNIRS data communicates to Neuracle server via an intermediate database. Here,
the user calibrates a machine learning algorithm on their own data by solving an
n-back in the console. Realtime classifications can then be redirected to a local
port, (e.g. to Phylter [5]) or to a web application, and external wearables like

Glass via the Mirror API.

1.4.3.1 Participants

Five participants (3 female, 2 male), ranging from ages 20 to 25, partook in the route

recommendation experiment, and two of the five completed the cognitive heatmap.

1.4.3.2 Adaptive Route Recommendation

Google, Apple and other technology companies have dedicated considerable re-

sources towards accurately mapping the planet’s roads and collecting detailed in-

formation about their convenience and traffic patterns. Research in human spatial

navigation ability lays the foundation for the user interface of these systems, in-

forming parameters such as the the timing and frequency of turn notifications as

well as the level of detail most amenable to a balance between comprehensible and

information-rich content. But in many cases, optimal settings for these parameters

are not fixed across time and user, but highly dynamic, a function of the user’s mood

or workload. There is usually more than one route to reach a particular destina-

tion, and often routes vary both in speed and complexity. Invariably, turn-by-turn

navigation software tends to suggest the swiftest, shortest route, sometimes guid-

28



ing users down difficult paths that lead them astray. If one path is slightly slower

but significantly easier to process and navigate than an alternative route, then an

up-to-date model of the user’s cognition can aid the choice of what path to suggest.

1.4.3.3 Architecture

The experiment simulated a wearable turn-by-turn navigation system by integrat-

ing Google Glass with an Imagent fNIRS imaging device. Imagent broadcasts raw

data to Boxy software, which transmits calculations of neural oxygenation levels

to Neuracle [2]. Neuracle rebroadcasts predictions of the user’s cognitive workload

to custom software called Phylter [5], which intercepts user locations from Unity

software [4], and decides whether or not to recommend the shortcut. The Unity

simulation included four roads (see figure 1.16): each supports one quick but chal-

lenging route, one long but easy route, and a variety of other routes that lead the

user astray. The quick route requires the user to read, memorize, and execute four

directions.

1.4.4 Method

The user began by solving either an oral 0-back (low cognitive workload) or a 1-back

(high cognitive workload). After twenty seconds, the driving simulation began (as

the user continued to solve the n-back), and within ten seconds, the suggested route

appeared on Glass. In the static condition, the user always received the shortcut:

four simultaneous instructions. In the adaptive condition, the user received the

shortcut when they had a low predicted cognitive workload and the longer route

when they had a high predicted cognitive workload.

1.4.4.1 Results and Discussion

In the adaptive condition, the system correctly displayed the appropriate route in

Glass in each of the ten instances (2 roads for 5 participants), depending on its

present calculation of the user’s workload. However, users did not arrive at the

destination faster nor suffer fewer collisions during the adaptive condition. They
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Figure 1.16: Unity map design.
Two paths to reach a destination: one straightforward route and one which

requires the participant to remember four simultaneous directions.

completed the simulation approximately as fast when completing a 0-back (m=99s,

s=50s) as when they completed a 1-back (m=105,s=44s). Figure 1.17 (which shows

concurrent brain measures) shows the raw data on which Neuracle based its predic-

tion of user workload. This validates the bidirectional communication capability of

Neuracle; fNIRS data can be tagged from external software, which enables it to learn

new user classifications post-calibration.

The high variability of results indicates that adaptive route recommendation

requires careful settings to several subject-specific parameters, which may be difficult

to extract in a laboratory setting. A proper cloud-based service like Google Maps

would infer difficulty and skill parameters of route recommendations and users based

on how frequently the suggested turn failed to produce the correct future GPS

coordinates. Concurrent measurements of the user’s mental state could then identify

the degree to which taking the wrong turn was sensitive to their mental state,

and suggest easier routes for the state-sensitive users when in a high workload or
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Figure 1.17: fNIRS measurement in right dlPFC during driving simulation for two
subjects.

In blue trials, participant completed a 0-back (easy), and in orange trials,
participants completed a 1-back (hard) while driving. The system delivered the
direction after 30 seconds, and trials varied in length depending on how long it
took to reach the destination. In the few samples shown, easy trials tended to

provoke more variable data than hard trials, which matches the effect observed in
offline calibration analysis.

otherwise compromised state.

1.4.4.2 Cognitive Heatmap

A well-designed wearable computer supports its user’s goals even when its services

are not explicitly requested [39]. Equipped with a camera, the device could take

repeated snapshots of the user’s vantage point. As a result, the user would have a log

of data that documented every activity engaged, in every acquaintance encountered,

and every location visited. If images were tagged with meaningful descriptions

about the user’s state, the user could search time points of interest and also catalog

the sorts of events that stimulated particular mental states. For example, if the
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application operated while its user attended a lecture, she could afterwards revisit

a state-indexed timeline, and discover the moments that stimulated the highest

levels of cognitive workload, or, conversely, the moments when she wasn’t paying

attention. This experiment prototypes a cognitive heatmap that enables users to

select relevant photos based on the associated cognitive state.

1.4.4.3 Architecture

The architecture resembles the previously described system, except neuracle’s cogni-

tive workload predictions never alter the contents of Glass. Instead, Unity position

coordinates, Glass photos, and mental state predictions are all associated in a single

file, which D3 visualization software [1] uses to display a set of points, colored on a

continuous scale from yellow to red representing the confidence that their workload

is high, which the user can click on to retrieve the associated image.

1.4.4.4 Method

Participants worked as a museum curator, instructed to count the distribution of

paintings in various rooms. Each room was a simulated environment, and the game

automatically moved them from one point to another; the user controlled the di-

rection of the camera. Some rooms included only one type of painting, and thus

the task amounted to counting the number of paintings. Other rooms included two

easily distinguishable types of paintings (Pop Art and East Asian), and updating

and memorizing this distribution was meant to stimulate high cognitive workload.

These rooms contained signs pointing to the content and time of future exhibits.

In a later task, the user had to use the cognitive heatmap to find the image that

contained this sign. If the system worked correctly, then these would be by the high

cognitive workload (red) points.

1.4.4.5 Results and Discussion

Participants reported using the indexing of their mental state as a search mechanism.

However, they did not find the photo quicker when the map was colored according
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to their cognitive workload. It was challenging to get the subject to fixate their

gaze on the relevant image, and so some of the generated maps included only a

blurred rendition of the target image. I nevertheless think the system shows promise,

especially with well-calibrated models whose confidence values communicate true

model uncertainty and in use cases where it need only pluck out a fraction of true

positives in order to benefit the user, e.g. if the user only has time to review one

lecture out of a longer series.

This chapter has given four experiments in the agnostic paradigm, demon-

strating the implicit BCI thesis. However, two of these experiments were aborted

when it was clear it would not be possible to obtain statistically significant effects.

This failure and others are the result of shortcomings with the agnostic paradigm,

which is the focus of the next chapter.
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Chapter 2

The Problem and Opportunity

of Entropy

The previous chapter reduced the challenge of building a BCI into three subprob-

lems: dimensionalization, portrayal, and interaction. It gave a solution to these

problems, and called it the agnostic paradigm for implicit BCI. This chapter is

intended to bridge the existing agnostic paradigm to a new physical paradigm by

demonstrating the entropy thesis of this dissertation. Neural entropy poses a prob-

lem for agnostic neuracles and an opportunity for physical neuracles as a property to

be detected in the user.

This chapter builds a case for the entropy thesis. The first section will expose

five problems with the agnostic paradigm, teeing up the remaining sections that linger

on the fifth problem: the problem of entropy. As promised by the previous chapter,

the dimensionalization section of this chapter pushes a modern conceptualization of

the brain as a hierarchical prediction and error correction engine; and the portrayal

section that follows gives empirical support for this new Bayesian model of brain

activity.
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2.1 Limitations of the Agnostic Paradigm for Implicit

BCI

To summarize the previous chapter: in implicit BCIs following the agnostic paradigm,

a user’s mental activity is dimensionalized along the axis of cognitive workload,

which is more narrowly defined as the content load of short term working memory

buffers in the prefrontal cortex. In order to portray the burden of working memory

to a user interface, changes in oxygenation consumption are measured at dorsolat-

eral regions of the prefrontal cortex through functional near-infrared spectroscopy

(fNIRS), which pulses near-infrared light through the skull of the forehead and de-

tects the amount of light that returns to a sensor approximately three centimeters

away from the light source. An agnostic neuracle builds a model for classifying

the strain on a user’s working memory on the basis of these fNIRS measurements.

In order to show the brain in different memory conditions, participants perform a

benchmark cognitive workload induction task (the n-back) alternating between its

easy and hard versions. The fNIRS signals of these trials are then described in

terms of statistical features and grouped into two sets (easy vs. hard), which supply

the instances for a machine learning algorithm. Once trained, the machine learning

algorithm delivers real-time predictions to the implicit interface for the evaluative

portion of the experiment.

The final sections of Chapter One show four solutions to the interaction prob-

lem of mapping working memory classifications onto changes in system properties

of wearable and stationary user interfaces. Two of these experiments showed signif-

icant improvements to user performance, and two were aborted when it was clear

the experiment would not yield any significant effects. There are at least two other

published implicit BCIs following the agnostic paradigm that demonstrate significant

improvements to user performance. In one, the agnostic neuracle was used to initiate

automation from a robot [121]; and, in another, user state classifications were used

to determine whether a novice piano player was prepared for a more difficult piano

lesson [132].
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For each published experiment that showed significant improvements to sys-

tem usability when supplemented by brain input, there may be others that failed

to show improvements, but are not known because of the positivity bias in schol-

arly publication. The wearable computer experiments in the previous chapter were

aborted when it was clear the agnostic solution would not lead to an implicit BCI

that enhanced system usability. Many experiments may fail because an agnostic

neuracle could not reliably classify the user’s cognitive workload state in real-time

due to inherent difficulties in this technique [64]. In particular, at least five issues

shared with machine learning in other neuroimaging devices [116, 82, 23], must be

addressed.

1. (a) Psychology problem: a cognitive dimension postulated on the basis of high

level psychological science, interpreting reaction times and subjective reports

instead of brain activity, may not be fundamental enough to the brain’s action

for detection by non-invasive neuroimaging.

2. (b) Overfitting problem: the task paradigm may elicit a distinguishable phys-

iological trace during the calibration task, but the general post-calibration

scenario implicates a wider range of states than the neuracle is trained to

predict.

3. (c) Disengagement problem: the task paradigm may fail to elicit consistent

differences in the brain because the task fails to combat the brain’s endogenous

prerogatives and engage the brain’s attention.

4. (d) Synchronization problem: by training the algorithm on features from a se-

ries of well-delineated n-length sequences, the algorithm is only well-prepared

to classify the state on the rare occasion that the user is n seconds into a

state that transitioned from a similar rest profile that preceded the task in the

calibration period.

5. (e) Entropy problem: the neurological activity associated with the state’s nov-

elty may be more pronounced than the activity associated with the state un-
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der investigation [65], yielding a unique signature in each machine learning

instance.

In this chapter, I will investigate the degree to which these problems affect

the fNIRS-based agnostic paradigm established in Chapter One. Together, these

sections motivate the need for physical neuracles which will be the focus of the next

chapter.

2.1.1 The Psychology, Overfitting, and Disengagement Problems

The psychology (a) problem poses no challenge to the agnostic paradigm in Chapter

One if cognitive workload exists on a spectrum in the brain so that brains are some-

times cerebrally active and sometimes deactive. I will refer to this as assumption

a. The overfitting (b) problem is unproblematic if the difference between a brain

completing a 3-back and a 1-back is similar to the difference between a brain com-

pleting any other hard task and any other easy task (assumption b). Finally, the

disengagement problem can be ignored if the experimental context and n-back task

reliably command control over the user’s attention (assumption c).

It is unclear which of the assumptions a, b, and c are true. Evidence from

neuroscience literature suggests that assumptions a and b cannot both be true.

Globally, the brain consumes approximately as much energy when there are high and

low demands from the environment, indicating that there is no cognitive workload

master dimension in the brain [108]. For a to be true, cognitive workload must

refer to a more specific spectrum in the brain, such as the activation of a short

term working memory buffer in the brain. But in that case, the agnostic neuracle is

unlikely to generalize to a wider array of mental states, and assumption b is likely

false.

The high variability of offline classification performance in agnostic neuracles

suggests that c is false, and there is not a single calibration protocol that universally

elicits the subject’s engagement. In his dissertation, Afergan mentions anecdotal

evidence suggesting that agnostic neuracles perform better when the user reports
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performing the audio n-back according to a specialized cognitive tactic [8]. Chapter

Five in this thesis affirms this conclusion. That chapter shows results from an

n=1 experiment published here [64], where I report on a multi-week self-experiment

measuring my own brain while I completed an n-back. In order to elicit a reliable

signal from fNIRS, the task had to put me at the edge of my abilities, and I therefore

had to increase the difficulty of the n-back over the course of the multi-week self-

experiment to witness an associated increase in fNIRS-detectable prefrontal cortex

activity.

These observations alone call for algorithms that encode the relationship

between fNIRS signals and mental states a priori, without relying on a calibration

period. The need for a physical paradigm is further motivated by the absence of

obvious solutions to the synchronization and entropy problems.

2.1.2 The Synchronization Problem

The synchronization problem (d) poses no challenge to the agnostic paradigm in

Chapter One if the information distinguishing different mental states can be defined

over a short time scale and if that information does not depend on a context specific

to the calibration period (assumption d). But the offline and real-time agnostic

neuracles given in Chapter One indicate that assumption d is false, and that the

best source of information is the slope over the trial’s entire time-series. This can

be seen visually in figure 2.1, where the canonical high cognitive workload state in

the three-back entails a steady increase in values over time.

Because the source of information is defined over a long period of time, the

agnostic neuracle should only be expected to accurately classify the user’s mental

state when a specific context matching the trial protocol in the calibration period

has unfolded. If k is the length of the trials in the calibration period, the agnostic

neuracle is only trained to classify the user’s mental state when they are exactly k

seconds deep into a mental state that transitioned from a resting state. In a real-

time experimental context, this only occurs once: k seconds into the experiment.

Among the five problems, the synchronization problem may therefore be the best
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Figure 2.1: Averaged fNIRS data

explanation for why some experiments following the agnostic paradigm fail to elicit

significant improvements to user performance.

2.1.3 The Entropy Problem

As stated by the entropy thesis of the dissertation, the fifth problem of agnostic

neuracles may be the key to a solution. Because it is important to understand,

this chapter focuses on the entropy problem, grounding it appropriately in fMRI-

based neuroimaging and cognitive neuroscience, and evaluating the degree to which

it affects both fNIRS and EEG.

The entropy problem (e) problems poses no challenge to the agnostic paradigm

in Chapter One if task-dependent physiological profiles are consistent over time

(assumption e). The following three sections evaluate if assumption (e) is true, and

if so, what new BCIs are possible.

2.2 Entropic Dimensionalization

Entropy is a term with different but overlapping definitions in physics and informa-

tion theory. An emerging neuroscience literature is beginning to use the term for

the purposes of understanding how neural networks change internal configurations

in response to external signals. A central contribution of this dissertation is to arrive

at a definition that is useful in the design of BCI and encoded by a physical neuracle

processing ongoing fNIRS data.
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2.2.1 Entropy in Thermodynamics

Statistical mechanics is a subfield of modern physics concerned with characterizing

physical systems with many degrees of freedom. In this community, entropy refers to

the tendency for systems to assume less ordered configurations over time. Compared

to a high entropy system, a well ordered system has a smaller microscopic state space

needed to express the system’s macroscopic properties [38].

Physicists use entropy to describe phenomena that can be observed in the

natural world. For example, imagine a glass of water moments after a human has

placed a soluble vitamin C tablet inside. In that moment, the water glass system

has a relatively low entropy: the emergent phenomenon of a drinkable liquid with a

solid tablet floating on the surface can be expressed simply as a collection of H2O

compounds supporting a group of artificial compounds bound together by human

effort. As the tablet dissolves and binds with the H2O compounds, the system as-

sumes a wider and more unpredictable range of macroscopic states, demanding a

more precise and larger microscopic state space to characterize its emergent config-

uration.

The second law of thermodynamics states that over time closed systems will

move towards disorder, requiring a larger microscopic state space in order to express

the emergent macroscopic behaviors of the system.

The concept of entropy may be easy to understand for computer scientists, as

a good programming imperative is to continually reduce entropy: both to make the

file size of the program smaller and to make it easier to read. A signature of high

entropy programs is code duplication, where similar logic is repeated at different

points of the program. Veteran programmers use abstraction to find functions or

objects that can be reused with different variable settings, thereby reducing the

entropy of the program.
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2.2.2 Entropy in Information Theory

Information theory is a field concerned with the storage, quantification, and com-

munication of information. It studies systems where there is a source of data, a

receiver, and some channel between source and receiver. The basic problem of in-

formation theory is to identify a method for the receiver to deduce what information

the source has generated based on the content in the channel. Entropy here refers

to the average rate at which the source produces information, where information is

understood as the resolution of uncertainty [110]. Information entropy is measured

in bits, formalized with a mathematical equation that captures the number of yes-

or-no questions needed to ascertain the observed outcome of a source (the value of

a random variable):

H(X) = −
∑

p(X) log p(X)

[3]. The intuition for this equation is that the entropy of a random variable, H,

is a summation of the shortest binary encoding of its possible values multiplied by

their probability. Consider how this equation would act on two artificial methods

to generate information: the random variable of a coin and a die. Flipping a coin

can result in two possible outcomes: heads or tails. The observer of a coin flip

must therefore only ask one question to know the outcome. Since the two outcomes

are equiprobable, flipping a coin has 1 bit of information. Rolling a die can result

in six possible outcomes, and therefore has more entropy, requiring more yes-no

questions to communicate the result from the source to the receiver. Since all sides

are equiprobable, the entropy of rolling a die is lg(6), or just below 2.585.

2.2.2.1 Kullback-Leibler divergence

The KL-divergence is a synonym for information gain, which provides the logic for

how a decision tree prioritized features, as discussed in Chapter One. The decision

tree placed features nearer the root that had a superior capacity to predict the class

on the basis of its values. As with the formula for entropy, the intuition behind
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the KL-divergence hinges on the notion of a minimal description length in a binary

encoding of symbols in a system. In order to communicate data efficiently, symbols

with a higher likelihood of occurring should map to a shorter binary encoding (e.g the

two most frequent symbols receive zero and one). But the system cannot know how

to optimally encode its data unless it has a perfect representation for the underlying

absolute and conditional probability distributions. Systems thus move towards more

accurate probability density functions as they witness data. The KL-divergence [87]

captures the gain in information (relative entropy) when a system moves from the

known prior distribution P towards a posterior distribution Q :

DKL(P ‖ Q) = −
∑
x∈X

P (x) log

(
Q(x)

P (x)

)
.

2.2.3 Entropy in Cognitive Science

Emerging fields of psychology recognize the utility of using constructs from statisti-

cal mechanics and information theory to explain the spatiotemporal structure of the

brain. According to the Bayesian brain hypothesis, the basic goal of the brain is to

actively and parsimoniously predict and suppress external sensory signals using the

knowledge of internal models, and to update these models so that prediction error is

minimized in the future [50]. The brain might be summarized as a hierarchical pre-

diction and error correction machine [31], in which information processing proceeds

bidirectionally, so that statistically informed prediction flows from the top-down and

prediction error modifies internal statistics from the bottom-up.

2.2.3.1 Free Energy

A pioneer of Bayesian models, Karl Friston models prediction error as free energy,

and asserts that the basic imperative of the brain is to minimize this quantity [50].

The free energy principle applies to all open biological systems that resist the second

law of thermodynamics for the course of their existence. By extension, it applies not

only to the brain, but to each network and cell that participates in its computation.

These biological systems erect a Markov Blanket that shields an internal state space
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from the inputs arriving from the external environment [102]. Successful systems

enact procedures that discover stable equilibria between the model of reality encoded

in an endogenous state space and the perceptions encoded by their Markov Blanket.

As especially sophisticated entropy reducers, the networks found in the brain arrive

at constructs that embody the underlying causes of sensation, mitigating the average

amount of ‘surprise’ they experience as they navigate an environment in which they

must survive and replicate.

According to Friston, the free energy principle explains action as well as

perception [50]. Perceptual constructs (i.e., objects in the sensorium) correspond

to updates in internal states that resolve prediction error. Similarly, action can be

modeled as entropy reduction in the external state that falls under the jurisdiction

of the brain’s motor effectors. For example, signals from the body may inform the

brain of a need to quench thirst, and signals from the eye let the brain conjure a

sensorium that affords the drinking of water. To purge these signals from the brain

(and reduce entropy), the brain applies motor commands to bring the cup to the

mouth, creating a new reality with lower entropy.

Figure 2.2 shows a simplified model of a human as always belonging to one

of four states, the desirability of which depends on the current scenario. A rigid

and mild endogenous brain indicates boredom or tiredness; a random and intense

endogenous brain indicates creativity or anxiety; a rigid and mild exogenous brain

indicates relaxation; and a random and intense exogenous brain indicates flow or

stress. Each state has specific user affordances, tasks that suit it, controlled and

incidental means to calibrate machine learning algorithms that detect it, as well as

guidelines for how to transform the state into another one.

2.3 Entropy in the Agnostic Paradigm

The following experiment illustrates the degree to which entropy affects the agnostic

paradigm. Unlike the previous chapter which limits its investigation to fNIRS-based

BCIs, this chapter expands the space to include EEG-based BCIs as well.
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Figure 2.2: A simplification of users into four states along two dimensions.
The Cognitive Workload or Entropy dimension indexes the degree of computation
and surprise in the user’s brain, and the Attentional Orientation or Predominant
Network dimension indexes the degree to which this computation is engaged in a

goal-directed loop with its sensory environment.

2.3.1 Differences between EEG and fNIRS

EEG (electroencephalography) and fNIRS have different advantages and disadvan-

tages, complement each other quite well, and have been studied separately many

times. Electroencephalography relies on a chemically-induced electrical charge that

occurs at a neuron’s action potential (the fundamental unit of computation in the

brain). The EEG infers the aggregate of many such events by measuring voltage

changes on the user’s scalp. The detected voltage at the scalp oscillates accord-

ing to specific patterns, which conveys information about the activity of neurons,

especially near the cortex [127]. Unlike EEG, whose most studied signals oscillate
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at frequencies above 1 hz, fNIRS takes seconds to register changes in state. This

prevents fNIRS from indexing the high frequency patterns powering the EEG signal,

but opens the device to measure longer term patterns in brain activation [104].

Complementing each other’s weaknesses and strengths, fNIRS and EEG seem

to invite integration into a singular input device that delivers a suite of predictions

about the user’s cognitive, emotional, and intentional state. EEG has poor spa-

tial resolution [17], meaning it is difficult to resolve from where a given signal is

originating, but it has good temporal resolution, meaning a given measurement

is temporally very close to the phenomenon it endeavors to portray. Conversely,

fNIRS has good spatial resolution but poor temporal resolution [44]. Because of its

good temporal resolution, EEG can capture a brief episode of mental activity and

translate that activity into a command. For example, a user might imagine body

movements (moving left or right hands) which would produce a machine learnable

EEG signal, which then could be mapped to a deliberate command [57]. fNIRS is

very difficult to use for direct input because it would necessarily take seconds for

the command to register. But EEG’s sensitivity to short term electrical fluctuations

leaves it vulnerable to noisy inputs. For example, an eye blink and other move-

ment also produces an electrochemical effect that drowns the neurological signal

underlying state classification [17, 67]. fNIRS does not suffer as severely from noise

[88, 122].

2.3.2 Hypothesis

The following experiment has been repeated four times using two portable brain

sensing instruments (EEG and fNIRS), making it possible to observe what dimen-

sions of user information processing are better left to the jurisdiction of either sensor,

in the hope of specifying how an integrated fNIRS and EEG system could jointly

classify the user’s state. I hypothesize that fNIRS, which has good spatial resolu-

tion, is better than EEG at classifying when user’s transition from resting to task

states, but that EEG, which has good temporal resolution, is better than fNIRS at

indexing a user’s entropy or workload, since information processing occurs quickly

45



Figure 2.3: Hitachi fNIRS equipment

in the brain.

2.3.3 Equipment

The EEG used in this experiment was Advanced Brain Monitoring’s b-alert X10, a

9-channel wireless EEG system with a linked mastoid reference, sampling at 256hz.

The EEG headset was placed on users using standard 10-20 measurement set-up

techniques [70]. Figure 2.4 shows the nine regions of the brain measured by each

channel.

The fNIRS device used in this experiment was the Hitachi etg-4000 fNIRS

device with a sampling rate of 10Hz. The fNIRS probe (Figure 2.3) was a 3x11

probe with 17 light sources and 16 detectors, resulting in 52 locations measured on

the head.

2.3.4 Method

Twenty-three subjects (8 female, 15 male) between the ages 18 and 49 participated in

the experiment. Upon arrival, subjects consented to the experiment and were fitted

with the fNIRS or EEG sensors. The prepackaged b-alert and Hitachi software

calibrated itself to the detected connection with the user’s scalp. Then, the subject

alternated between 8 instances of an arithmetic task and 8 instances of an image-

matching task, performing each task for 35 seconds, with 15-second controlled rest
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Figure 2.4: Channel locations for fNIRS and EEG. For fNIRS, only highlighted
Brodmann Regions are measured

periods in between. For the image-matching task, users indicated whether sequences

of images matched each other, as in an n-back [51] with n permanently set to

1, similar to the low cognitive workload condition used in previous implicit BCI

work [6]. For the arithmetic task, users added two two-digit integers to each other,

entering the response into a text box. Figure 2.5 shows the computer output for

these tasks and Figure 2.2 plots these tasks (and comparisons between them) along

the spectra of cognitive workload and attentional orientation.

I was especially interested in the transition between task and rest, and how

that would change in the first and second session for both EEG and fNIRS. My

interest in inter-session comparison was born out of a consideration for how machine

learning algorithms might decay over time if they did not account for updates to

the user’s cognition. As mentioned, I was especially interested in corroborating

a previous small long-term pilot [64], where I tracked my fNIRS data over the

course of several weeks as I made myself an expert at the cognitive workload tasks

typically used in implicit BCI (the n-back). In later sessions, I noticed that fNIRS

failed to register a strong effect unless the difficulty placed me at the edge of my

ability, and I hypothesized that my brain had over time generated too efficient

top-down schemes for solving the task, thereby leaking less prediction error up a
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Figure 2.5: The three conditions of the experiment

cognitive hierarchy, the information theoretical construct to which I hypothesize

these cortically-sensing instruments are principally sensitive. If that is the case,

then machine learning algorithms operating from either EEG or fNIRS data should

degrade in a second session of the experiment. The experiment was thus repeated

four times in two sessions for each device on two separate days. The second session

for a given participant was at most 27 days later and at least 23 days later.

For each of the 23 subjects, there were four datasets (two sessions for each

device). Each dataset included 8 trials for the math task, 8 for the image task,

and 16 for the resting task. I was interested in whether or not I could build an

agnostic neuracle to separate the image and math task using both fNIRS and EEG

data, as well as how this algorithm might change in the second session. I trained

a new machine learning algorithm, for each subject for each session, and for each

neuroimaging device. I tried one approach for feature design using the specifications

optimized in Chapter One [128], and for ease of communication, I let this algorithm

be identical for both EEG and fNIRS, leaving the critical preprocessing components

to the software distributed by Hitachi and the b-alert EEG.

For fNIRS, the input to the agnostic neuracle was a matrix of 52 channels that

had been converted from light intensity into oxygenation measurements according

to the Beer-Lambert Law, and bandpass filtered, leaving only the components of

the signal that fluctuated between 0.01 and 0.5 hz. In the analysis, I omitted de-

oxygenation measurements since these values largely convey the same information
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as oxygenation. For EEG, the raw data was processed by Advanced Brain Moni-

toring’s proprietary acquisition software, which includes artifact decontamination

algorithms for eye blinks, muscle movements, and environmental/electrical interfer-

ence. After decontaminating the raw data, the input was a matrix of 90 channels,

consisting of the average power spectral density, averaged together into one second

time periods, at each of the nine channel locations. Power spectral density was

computed for the ten frequency bands of delta (1-3Hz), theta slow (3-5Hz), theta

fast (5-7Hz), theta total, (3-7Hz) alpha slow (8-10Hz), alpha fast (10-13Hz), alpha

total (8-13Hz), sigma (12-15Hz), beta (13-30Hz), and gamma (25-40Hz), at each of

the channel locations.

For each instance, I computed the mean, linear slope, and standard deviation

of the entire time-series of values for each channel. Thus, for inter-task (A1, A2)

comparisons on the fNIRS data, the 350 readings x 52 channel windows became

2 condition x 8 trials x 156 feature instances and for EEG, the 35 readings x 90

channels window became 2 condition x 8 trials x 180 feature windows. For the task

vs. rest comparisons (B1, B3), the same transformation occurred but the first 150

readings of the task were extracted, and compared to the 150 readings of resting

data. I fed these feature sets into Matlab’s Statistics and Machine Learning Tool-

box implementation of the linear kernel support vector machine (SVM) and did not

change default parameters (since the goal was to discern to what fundamental di-

mensions the machine learning algorithms were most sensitive and how that differed

between devices, and not to maximize machine learning performance). I evaluated

each machine learning separation using 10-fold cross validation [109], training the

machine learning algorithm on all but an approximate tenth of the data, changing

what tenth was omitted from the dataset and using that set for testing the trained

classifier in ten separate tests. For all tests, evaluation instances were drawn from

the same subject and session as the training instances that drove the machine learn-

ing algorithm. Next, I report on the averaged 10-fold cross validation classification

accuracy for each test of interest.
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Table 2.1: SVM Machine Learning Accuracies for Matching vs. Addition Com-
parison (A1,A2). m denotes the mean classification accuracy for all 23 subjects in
10-fold cross-validation and s refers to the standard deviation. For each row and
column, classification accuracies have been compared in a paired samples t-test, and
the p-value is reported.

S EEG fNIRS p
1 m=73%, s=21% m=72%, s=18% 0.7358
2 m = 80%, s = 29% m = 71%, s =17% 0.0525
p 0.2430 0.8900

2.3.5 Results

2.3.5.1 Task Comparison: A1,A2

For each session, I made two comparisons for each device, first distinguishing be-

tween the two task conditions and then separating the two tasks. Table 2.1 shows

classification accuracies in cross-fold validation for the inter-task separation. In the

previous section, Figure 2.5 shows how I expect these two tasks to differ from each

other with respect to the workload and attentional orientation dimensions for the

different sessions. The addition task presumably poses a greater burden to the user’s

cognitive workload than the matching task. I have compared the mean classification

accuracies for each of the 23 subjects between both device and session, and Table

2.1 reports the probability that the null hypothesis is true in a paired sample t-test.

There were no significant effects in these comparisons, but the EEG-based machine

learning algorithms trended towards better performance. The results highlight that

both devices can effectively parse the user along the cognitive workload dimension.

2.3.5.2 Rest versus Task Comparison: B1,B2

Table 2.2 shows an identical analysis, but for the comparison between the two tasks

and rest. Since rest periods were shorter than task periods, I truncated the task

trials so that they only included the first 15 seconds of data. Table 2.1 indicates

that this comparison primarily determines whether or not the user has engaged an

endogenous or exogenous network. For fNIRS, machine learning performance in

the first session (m = 84%, s = 9%) is significantly better than machine learning
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Table 2.2: SVM Machine Learning Accuracies for Task vs. Rest Comparison
(B1,B2).

S EEG fNIRS p
1 m = 79%, s = 11% m = 84%, s = 9% 0.11
2 m = 68%, s = 17% m = 75%, s =13% 0.11
p 0.0270* 0.0096**

performance in the second session (m = 75%, s = 13%) (p =0.0096, N = 23).

Similarly, for EEG, machine learning performance decays significantly from the first

session (m = 79%, s = 12%) to the second session (m = 68%, s = 17%) (p =0.0270,

N = 23).

2.3.6 Discussion

It is interesting that EEG (m = 76%) outperformed fNIRS (m = 71%) at separating

the mathematical and image recognition task, which manipulates the user along the

cognitive workload dimension, but that fNIRS (m = 80%) outperformed EEG (m

= 74%), which manipulates whether or not the user is engaging a task-positive

or task-negative network. Even though these differences are not significant, the

results are consistent with the hypothesis that these two devices complement each

other, covering the other’s weakness. fNIRS is generally regarded as supporting

better spatial resolution whereas EEG has better temporal resolution. Since every

region in the brain is better described as belonging to either a task-positive or

task-negative network and these two networks are anti-correlated, the fNIRS-based

features (which are not as confused as EEG about the tissue they measure) might

provide the information the SVM needed to discern the notion of anti-correlated

networks, and robustly predict the user’s state. This will be elaborated in the next

chapter, as anti-correlated networks can supply the basis for a physical paradigm for

BCI.

Another interesting result is that in both fNIRS and EEG experiments for the

separation rest versus task, classification accuracy in session 1 reduces significantly

in the second session for both fNIRS (p = 0.0096) and for EEG (p = 0.0270), but

not for the separation between the two tasks, where classification accuracy is in
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fact better in the second session for EEG and approximately the same for fNIRS.

However, this is not surprising if the brain is dimensionalized according to the

Bayesian framework. Both fNIRS and EEG measure brain activation principally

at the outer tips of the brain: its cortex. In a Bayesian framework, the outer

tips of the brain’s hardware presumably carry out computations very high in the

information processing hierarchy. In the second session, subjects had already been

exposed to the tasks; thus, the second session cognitive makeup likely included

internal representations that solved the input-output relations dictated by the task

at a more primitive point in the information processing hierarchy, reducing the

prediction error and its associated corrective events to penetrate the higher level

regions of the brain under interrogation by the brain sensors.

Specifically, I attribute the relatively increased difficulty of the SVM to pre-

dict transitions between task and rest in the second session to the greater difference

in system entropy between the resting and task conditions in the first session than in

the second session. Since prediction error (or free energy) dictates the entire opera-

tion of a Bayesian brain, this may be another way of expressing that, in the second

session, the user had absorbed efficient probability distributions for the task, en-

abling competing endogenous resting state inputs (which draw from the same finite

pool of oxygen supply) to flourish and thus produce a profile that better matched

the resting state. In simpler terms, the user’s brains had figured how to efficiently

solve the task in the second day of the experiment, but not how to efficiently rest.

With this interpretation, machine learning accuracy did not change significantly for

the inter-task comparison since the user had previously engaged both tasks, mak-

ing so that task-induced entropy would decrease equally in both conditions. This

finding demonstrates the first part of the entropy thesis by showing that agnostic

neuracles are highly sensitive to the novelty of a state, and may not be able to find

algorithms that classify across sessions.

As stated by the entropy thesis, the difficulty to control for system entropy

between tasks and sessions is a feature, not a bug, of brain-computer interfacing

so long as it is acknowledged by the designer. By defining the user dimension
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of cognitive workload using Bayesian formulations of system entropy, there is an

opportunity to understand oscillations in brain activity without machine learning.
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Chapter 3

Anti-correlated Networks for

Physical Neuracles

So far, this dissertation has stayed within the boundaries of its predecessors in

implicit BCI, identifying advantages and disadvantages of what is referred to as

the agnostic paradigm, as well as possible paths forward based on contemporary

neuroscience. Chapter One

• specified the agnostic paradigm, conducting an offline evaluation of machine

learning algorithms trained to distinguish high and low cognitive workload

states in n-back data

• showed four implicit stationary BCIs obeying the agnostic paradigm.

With a specification, implementation, and evaluations of BCIs in the agnostic paradigm,

Chapter Two slowed down the research, taking a small step backwards in order to

pave the way for a large leap forward. Chapter Two

• identified five problems without obvious solutions in the agnostic paradigm

• gave a neuroscientific simplification of brain activity designed to better predict

the spectra of mental states which neuracles can be calibrated to detect

• showed results from a two-session fNIRS and EEG experiment, giving evidence
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for the capacity to portray this new dimensionalization using neuracles, as well

as demonstrating how the entropy problem affects BCI.

Together, these chapters demonstrate that BCIs may be able to measure

the moment-to-moment information processing burden (or entropy) the application

poses on the user, and adjust internal semantic or syntactic parameters in order

to sustain a flow state for the user, where the challenge is at a sweetspot set to

optimally combat the brain’s default prerogative to retreat into resting networks out

of boredom or frustration. However, these chapters also demonstrate that realistic

implementations of these BCIs are not possible without algorithmic solutions to the

five problems of agnostic neuracles.

In the absence of algorithmic solutions to these problems, this chapter ex-

plores an orthogonal method for building neuracles in what will be referred to as

the physical paradigm for BCI. Previous research has avoided the physical paradigm

because it depends on an understanding of how the brain works at many levels of

analysis. But engaging the multidisciplinary research needed to decode the raw

fNIRS signal may be worth the effort since a physical neuracle suffers none of the

five problems defined in Chapter Two.

A calibration period that manipulates the user’s state to provide instances for

a machine learning algorithm is unnecessary, since the system understands the signal

by definition, which solves the psychology, disengagement, and overfitting problems.

This period can instead be used to change the probe configuration and other pa-

rameters with known individual variation. The entropy problem can be avoided

by targeting entropy as a dimension under investigation [65]; and a dynamic seg-

mentation algorithm, which partitions the fNIRS signal into distinct cycles of the

low frequency oscillation investigated in this paper, may overcome the synchroniza-

tion problem (see Chapter Four). Instead, the key problem of a physical neuracle

is knowing what a given signal represents. This chapter argues that contemporary

neuroscience has produced enough information to decode at least one physical di-

mension in a user, describing a basic trade-off in information processing. It therefore
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defends the anti-correlated network thesis.

Anti-correlated Network Thesis: The strongest anti-correlated network in

fNIRS data in between 0.01 to 0.1 hz describes user attention as it shifts between

a more sensory (or exogenous) mode to a more conceptual (endogenous) mode, and

can be minimally measured by one fNIRS probe by the eyebrow and one by the ear.

3.1 The Significance of Anti-correlated Networks

Progress towards physical neuracles depends on identifying user dimensions that

are physically real in the user’s brain [65, 116, 82, 23]. Plausible initial dimensions

describe high level information processing trade-offs that are evident from the brain’s

neuroanatomy and network architecture, and leave aside a more specific description

about the contents of these networks. This chapter’s approach for identifying user

dimensions that are physically real, as well as useful descriptors of the user, is

inspired by the discovery of negatively correlated (anti-correlated) networks in the

brain, where the activation of one network implies a simultaneous deactivation in

some other spatially distinct network. The rationale is that two anti-correlated

networks together define a physically real trade-off in the brain’s moment-to-moment

information processing. Since the spectrum of states in between the extreme bias

towards one network or its inverse is physically measurable by definition, this trade-

off meets the measurability requirement for a candidate output of a physical neuracle.

Furthermore, if a BCI measures two distant regions that are anti-correlated, then

it can leverage two independent sources of information when determining whether

some change reflects a meaningful signal or noise. For these reasons, I propose

calibrating physical neuracles on anti-correlated networks in the brain, and I will

dedicate this chapter to answering two questions related to these anti-correlated

networks.

1. What are the probe locations for the strongest anti-correlated network in

fNIRS data?
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2. What trade-off in mental state does this signal describe about the user?

Contemporary neuroscience suggests that the strongest anti-correlated net-

work in the brain is between the task-positive and resting state networks [106]. These

two networks differ primarily on whether the network’s input has exogenous (from

the environment) or endogenous (from the brain’s memory) origin and whether its

output serves an immediate or delayed function. The task-positive networks (TPN)

show an increase in activation when the subject performs a task and must imple-

ment functions that interpret live sensory (exogenous) signals and set appropriate

motor responses, e.g. maneuvering a car in response to changing audio/visual/tactile

traffic information. Conversely, the anti-correlated resting networks consume more

energy during conditions in which the environment poses no immediate demands

on cognition. Spatially, the resting networks are more separated from the sensing

organs, and operate primarily on endogenous memory. Activity in the most studied

and energy-intensive resting network, the Default Mode Network (DMN), appears

to coincide with the mental sensation of an automatic mind wandering stream that

may not be relevant to the current situation [106].

While trying to follow this introduction’s multidisciplinary BCI threads,

some readers may notice their DMN periodically interrupting their attention to

the dissertation with brief mind-wandering episodes. A brain-adaptive version of

this dissertation may attempt to re-engage the user’s attention in these moments

by making a subtle change to the text’s font or otherwise interrupt the reader

with helpful definitions of some of the dissertation’s important concepts like anti-

correlation, default mode network, and agnostic neuracle. Knowledge about the user’s

anti-correlated networks can also be leveraged to their delayed benefit. For example,

if the central topics of this dissertation were expanded in an online brain-augmented

virtual classroom, the brain’s regression into the DMN while trying to understand

the concept of the DMN could be acknowledged and saved in a database. When

determining what content to revisit in preparation for the final exam, the virtual

classroom could spend additional time on that content which had caused the brain
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to retreat into the DMN. The virtual teacher may then also consider rewriting that

material to be more engaging in the next iteration of the class, providing a similar

interface to the cognitive heatmap in the beginning of Chapter One.

The cyclical activity in these anti-correlated networks may offer a real-time

classification of the canonical high quality attentional state known as flow [33]. It

is possible that the flow state may manifest as a temporary suspension to periodic

oscillation between major anti-correlated networks, suggesting an opportunity to

guide the user towards improved attentional states. This is the aim of the bidirec-

tional BCI that will be introduced in Chapters Six and Seven, when I have specified

the ingredients for a physical paradigm for BCI. In one example of a bidirectional

BCI, the user may be programming while listening to an instrumental brain-adaptive

song on repeat in fNIRS-augmented headphones. The low information version of

the song repeats a simple but entrancing melody from a piano, played gently. In

this version, the song does not intend to command the brain’s attention, providing

beautiful sounds that neutralize other auditory distractions. But when the BCI de-

tects a build-up in the endogenous default mode network, the song could morph into

its high information version, adding a progression of violin chords that harmonizes

the piano’s melody. If the violin sequence has the right amount of brain relative

novel information, the brain may prioritize processing this new exogenous auditory

signal over the endogenous signals of the default mode network, preventing what

may have amounted to a prolonged period of malproductive mind wandering.

In order to create the physical neuracle that enables a brain-adaptive inter-

ruption engine that aborts task-irrelevant rumination, the virtual classroom that

intervenes and remembers when its students zone out, a meditation assistant that

expedites long term attentional training, and the brain-adaptive music that changes

its audio content during moments of high endogenous processing, as well as sev-

eral other applications not yet imagined, this chapter documents a search for anti-

correlated networks in the brain. I believe this anti-correlated network defines a

routine back-and-forth between exogenous and endogenous modes of processing in

the brain. This low frequency spatially defined signal may elude the EEG, suggesting
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more powerful BCIs that fuse EEG and fNIRS.

The purpose is thus to determine the probe configuration for an algorithm

that determines the task-positive versus default mode network cycle in a physical

neuracle. Any measured region shows more or less activity during a task or in rest,

but some are more decisively task-positive. Because the correlation between fMRI

data and fNIRS data is only about 0.25 [34], the optimal probe location must be

determined on the basis of fNIRS data. I therefore ran a 4-session, 50-subject fNIRS

study, and analyzed the data to cluster the fNIRS channels into three categories:

those which increase during rest; those which increase during task; and those which

don’t vary in response to rest or task. I categorize nodes from fNIRS data collected

on two sessions of an experiment on one day and evaluate the nodes chosen on two

follow-up sessions, approximately two weeks later. This chapter makes multiple

contributions towards the development of physical neuracles from fNIRS data:

1. The background section summarizes existing HCI, BCI and neuroscience lit-

erature, leading to a framework for how to detect a user’s changing degree of

endogenous and exogenous processing on the basis of anti-correlated networks.

2. The results section describes the methods and results of a 50-person, 4-session,

52-channel fNIRS experiment aimed to manipulate the user’s attentional state

along these dimensions. The data analysis focuses on identifying a pair of

probe locations with high anti-correlation to each other, whose values fluctuate

depending on whether the subject is performing a task or resting.

3. The discussion section specifies a physical neuracle based on anti-correlated

networks which fuse EEG and fNIRS data and can be implemented in the

open-source Neuracle software distributed in Chapter Five.
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3.2 Background

3.2.1 Distraction by the Default Mode Network

Contemporary neuroscience finds that the brain at rest typically does not rest [106].

Instead, it initiates resting networks which reflect, plan, and fantasize – a phe-

nomenon corroborated in an experiment where one hundred percent of participants

who were instructed to not think for a 20-25 second period reported in fact having

thoughts during that period [47]. To support these functions, the brain consumes

only fractionally (∼ 5%) more energy when in the task-positive network (TPN)

[106]. This finding is explained in terms of a computationally expensive default

mode network (DMN) wired to ruminate when these processes do not interfere

with higher priority environment demands. Conveniently for physical neuracles, the

regions supporting the DMN are similar across subjects. Resting networks often en-

gage the ventromedial prefrontal cortex (vmPFC at Brodmann (B.) area 10), which

were measured in this experiment. Capturing activity in this region may therefore

supplement existing techniques for quantifying user engagement using physiologi-

cal sensors such as EEG [18], eye-tracking [105] and GSR [89, 41] (see [42] for an

overview).

Although mind wandering may serve a creative function [80], the time a

human spends in the DMN correlates negatively with both productivity and satis-

faction. In a vigilance task, increased activity in regions of the DMN preceded worse

reaction time [131], and in another experiment, DMN activity predicted task error

up to 30 seconds into the future [40]. In a smartphone survey on 3000 individu-

als, Killingsworth (2010) estimated that, on average, brains spend roughly as much

time indulging either network [77], but time spent in the default mode network is

considered less enjoyable and also predicts future dissatisfaction. Other research

implicates smartphone and internet usage as culprits in an ongoing attention epi-

demic [30, 112, 21, 79]. Before the rise of the Internet, obtaining and spreading

information required physical effort. However, information is now acquired and dis-

seminated virtually. What used to require planning, working memory, and patience
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is now accomplished automatically in a digital instant, freeing DMNs to meander.

What is more, the information age’s powerful social stimuli (e.g. gossip), strong

feedback loops (e.g. video games), positivity biases (e.g. Facebook news feed), and

continuous presence (e.g. a smartphone) may have disturbed the natural rhythms

of attention, elevating the amount of stimulation necessary to obtain flowing exoge-

nous attentive states where attention is happily wedded to sensory-motor mappings.

Instead, some users may feel uncertain about what to do, vulnerable to interruption,

and attentionally fragmented.

HCI research should carefully consider the role a given technology plays in

fanning or fueling the attentional epidemic over the course of its sustained use. If

negligently designed, the BCI proposed in this dissertation will maximize user expe-

rience and attention in the short term, but by hyper-fitting digital inputs to induce

peak states, the user may become dependent on the technology and less satisfied in

the long term. This problem is taken seriously in Buddhist literature, and I there-

fore briefly summarize ongoing research into meditation, which may be regarded

as a millennial long empirical investigation into the development of a practice that

improves attention.

3.2.2 Improving Attention in the Long Term

In parallel to the attention epidemic, meditation has emerged as a popular practice

for improving the quality of attention, especially in technologically advanced West-

ern hubs such as Silicon Valley. A growing Neural Buddhist literature argues that

training the ability to regulate attention can improve cognitive functions, as well

as mitigate psychiatric disorders [9, 60]. A sustained meditation practice correlates

with improving schizophrenia [29], depression [126], anxiety [55], ADHD [119], emo-

tional regulation [86], memory [134], self regulation [125], and self-awareness [69].

The data from neuroimaging scans suggest that meditation reduces competition

(or anti-correlation) between the task-positive network and default mode network

[85, 62, 63]. This finding is difficult to parse, but worth footnoting in the design of

technology that seeks to improve the quality of its user attention.

61



Those with cultivated skills of introspection emphasize the distinction be-

tween self (endogenous processing) and other (exogenous processing) when describ-

ing the meditation exercises that led to improved experience [9]. For example, in

Focused Attention meditation, the meditator rests attention on external stimuli (e.g.

breath or sound), and attempts to reduce competitive influence from internal dis-

tractions. Compared to novice meditators, expert meditators show less activity

in key regions of the DMN and more activity in areas related to top-down atten-

tional control [22]. This literature shows that meditation modifies brain activity by

changing the interplay between endogenous and exogenous networks [118]. A pair of

signals describing the rhythmic oscillation between these networks may thus source

the key neural parameters for long-term optimization in a BCI. In this chapter, I

argue that this rhythm is a sufficiently global pulse of brain activation that fNIRS

can monitor its real-time fluctuations. In Open Monitoring (OM), the meditator

allows internal rumination to occur but treats these thoughts non-judgmentally as

neutral data-points. Compared to novice meditators, expert meditators have a rest-

ing state that more closely matches their state when they perform OM meditation

[90]. Finally, in Nondual Awareness (NDA) meditation, the meditator is instructed

to be equally aware of external and internal processes, allowing experience to come

and go of its own accord. Compared to FA meditation, NDA meditation entails

reduced anti-correlation between exogenous and endogenous systems, as measured

by BOLD activity in the associated networks [74]. We have investigated how to

study meditation with fNIRS in previous research [66].

3.2.3 Classifying TPN versus DMN Activity using fNIRS

Spontaneous hemodynamic fluctuations in fNIRS data associated with default-mode,

task-positive, and frontoparietal networks have been investigated previously in neu-

roscience literature [113, 95]. In 2013, Harrivel et al. evaluated fNIRS correlates

of the task-positive and task-negative networks. In this experiment, five partic-

ipants wore fNIRS as they completed the multi-source interference task (MSIT),

which requires the participant to suppress distraction. This experiment identified
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two pairs of anti-correlated networks, the medial frontal gyrus (which increased ac-

tivation during rest) and the dorsolateral prefrontal cortex (dlPFC, which increased

activation during task) [61].

Harrivel et al’s results [61] have inspired the present investigation. However,

I evaluate different tasks in the present experiment, measure more regions, apply dif-

ferent statistical methods, and run the experiment on 50 subjects in four sessions.

These modifications allow us to approach the search for anti-correlated networks

more naively, unbeholden to prior knowledge from fMRI literature. In Harrivel et

al’s experiment, nodes were placed on key regions of the task-positive and task-

negative networks as known in the fMRI literature, but fNIRS and fMRI measure-

ments are not entirely correlated (approximately 0.25 on average [34]). Compared to

fMRI, fNIRS has a finer temporal resolution, but an inferior spatial resolution, and

it measures both oxygenated (oxy) and deoxygenated species of hemoglobin. For

these reasons, I measure 52 channels across the user’s cortex, as I attempt to form

clusters of task-positive and resting state regions among these channels. I repeat

the experiment four times on 50 subjects, using the first two sessions to select the

channels and the last two sessions to evaluate that selection.

The aim of this research paradigm is to produce a physical neuracle which,

given fNIRS input, outputs a real-time measure of some physical trade-off in the

user’s moment-to-moment information processing. This section provides results sug-

gesting that a physical neuracle tuned to the orientation of user attention is possible

in principle. A complete validation of the utility and accuracy will await the imple-

mentation of BCI that uses this physical neuracle to the user’s measurable benefit.

In preparation of future experiments, the output of the present analysis are settings

to variables in the hypothetical physical neuracle, especially filter techniques and

probe configuration.

The goal is to evaluate the hypothesis that fNIRS measures are sensitive

to the orientation of attention, and to provide a clear set of recommendations in

terms of where probes need to be placed. The aim of this search is two-fold. First,

I expect greater clarity for how to design an fNIRS-based BCI if the signal can
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be plausibly mapped onto a well-studied neurobiological phenomenon (i.e., the anti-

correlated task-positive and default-mode networks found in neuroscience literature)

that survives all levels of scientific analysis: i.e. it has a known and well-delineated

neurobiological anchoring, it provides a spectrum that remains relevant for any state

in question, and it also signifies sufficient meaning about the user, making it possible

for a designer to reason about how to map changes in the user’s neurobiological state

to system adaptations. Second, if an adaptive system measures regions that are

anti-correlated, then it can leverage two independent sources of information when

isolating the meaning of a signal. For example, suppose a real-time fNIRS system

witnesses an increase in the light intensity quantities it measures at probe A. In

order to decide whether that increase reflects noise (e.g. the probe is dislocated)

or a known signal, it can verify that probe B shows a concomitant decrease in

values, provided probe A and probe B are known to be anti-correlated, fluctuating

in response to the user’s external versus internal attentional orientation.

3.3 Method

3.3.1 Equipment

The experiment measured brain activation using a Hitachi ETG-4000, which cost

roughly $370K, but contains no parts which cannot be built more cheaply, making

it a good instrument for deciding the specifications for a cheaper device. This 52-

channel continuous wave (CW) system is depicted in Figure 1. There are a variety of

probe options available for the ETG-4000 that can span several regions of the brain

cortex (depending on the areas that researchers want to measure). This experiment

uses a 3 (row) x 11 (column) probe with 17 light sources, and 16 light detectors. The

light sources and detectors are spaced in such a way as to allow the measurement

of 52 unique locations (also referred to as ‘channels’) across the brain cortex. Each

light source produces near infrared light at two wavelengths (690nm and 830nm),

which are pulsed intermittently in time. This results in 52 channels x 2 wavelengths

= 104 readings at each time point, and the device collects 2 samples per second.
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3.3.2 Experiment Protocol

51 subjects (37 male) participated in the experiment, with one participant omitted

from analysis due to data loss. Subjects were college students (aged 18-22) repre-

senting a wide range of majors. Informed consent was obtained, and participants

were compensated for their time. All subjects filled out a pre-survey, which so-

licited demographic and health information. During the experiment, the subject

alternated between three tasks, which manipulated the orientation of their atten-

tion. Each task lasted 20 seconds and was repeated a total of four times in one

session. Each task was separated by ten seconds of uncontrolled and unanalyzed

time. Each subject completed a total of four sessions on two separate days. The first

and second sessions were completed on the first experiment day and the third and

fourth sessions were completed on a second day approximately two weeks later. In

the search for anti-correlated networks, the first two sessions were used for channel

selection and the second two sessions were used to provide an independent group

to evaluate that selection. A timed PowerPoint presentation displayed the task

instruction, alternating between three conditions in the experiment:

1. Addition Task (A) inducing Exogenous TPN Activity. This section began

with a slide instructing participants to ‘Start with x, where ‘x’ was a small

number, such as 5. Each addition slide was displayed for 2 seconds, and

participants were told to keep a running sum of the numbers as they appeared.

Next, new slides appeared with instructions such as ‘add 6’ or ‘add 9’. The last

slide of the addition section instructed the participant to tell the experimenter

the sum calculated. This task elicited exogenous goal-oriented cognition with

limited confounding movement.

2. Phone Number Task (P) inducing Endogenous TPN Activity. The partic-

ipant was instructed to sub-vocally rehearse their phone number repeatedly

for the duration of the slide. This task did not require the user to process

any exogenous inputs or produce outputs, but nonetheless required the user

to deliberately engage memory and suppress the DMN.
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Figure 3.1: Hitachi ETG-4000 in use

3. Controlled Rest (R) inducing Endogenous DMN Activity. Participants were

told to relax and clear their minds during this task. This non-task created the

conditions for subjects to engage their DMN.

All sessions followed an identical sequence of tasks: P, A, R, A, P, R, P, A, R,

A, P, R (see figures 3.3 and 3.3). Before beginning the experiment, subjects were

informed about the tasks, invited to ask questions, and told to remain still and silent

throughout the session, unless otherwise instructed. Participants were misled into

believing the tasks would appear in random order so that they wouldn’t anticipate

the next task. Finally, the fNIRS cap was placed on the subject and the PowerPoint

began.

3.3.3 Preprocessing

I was interested in finding neural correlates of task-positive and resting-state regions

in fNIRS, and therefore preprocessed the data to provide the cleanest description

of brain activity. This entailed first extracting measurements of oxygenated and

deoxygenated hemoglobin from the raw signal of light intensity according to the

Modified Beer Lambert Law [36], and bandpass filtering the signal to include only

frequencies between 0.01 and 0.1 hz., a step that removes the high frequency com-

ponents of the signal stemming from respiratory artifacts, heart rate, and motion,

as well as the low frequency components stemming from brain oscillations and other
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Figure 3.2: Brodmann areas interrogated by the ETG-4000

unknown slow drifts. These preprocessing steps were both accomplished by the

Hitachi ETG-4000 software package.

In addition, I also applied a makeshift adaptive filter [135]. The rationale

of this filter is that any given series of fNIRS measurements fluctuates not only in

response to the local brain tissue under investigation, but also to changes in blood

flow and oxygenation properties in the system at large [78]. With an independent

measure of the channel containing exclusively noise, the frequencies present in the

noise channel can be removed from the deep channel containing both skin and brain

activity. In the absence of a third-party measure for this experiment, we averaged

together all 52 channels and treated this average signal as the noise channel, and

subtracted its frequencies from each channel’s data using a least means squared adap-

tive filter. This strategy appears effective at exposing a signal that can be otherwise

drowned by system-wide changes. (I note further that this adaptive filtering style

is easily portable to a real-time context, and may be more effective if the regressor

channel is adjacent to the source.)
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3.3.4 Results

3.3.5 Machine Learning for Agnostic Neuracles

In order to gauge the effectiveness of an agnostic neuracle, I first evaluated the

capacity to separate the addition task (A) from the controlled rest period (R) on

the basis of a machine learning algorithm trained on oxygenated fNIRS data. I tried

only one algorithm with effective settings, shown in Chapter One and published in

[128], and evaluated it with leave-one-session-out analysis. I created a support

vector machine (SVM) trained to separate resting conditions from task conditions

on the mean and slope of each fNIRS channel on each session for all subjects except

one, repeating this analysis once for each session. The algorithm was thus trained

independently on 200 sessions 200 separate times, where each session to be evaluated

included 4 instances of each condition (not included in the training set), and thus

8 total predictions. The mean accuracy across all 50 subjects was 70%, standard

deviation = 14%, ranging from a minimum accuracy of 38% and maximum accuracy

of 97%.

The SVM’s 70% mean accuracy reflects the capability to distinguish between

resting networks and task-positive networks using agnostic neuracles in a scenario

where the machine learning algorithm can access data recorded from previous ses-

sions for that user. Although the underlying machine learning can likely be im-

proved, it should be noted that the classification accuracy reflects a sort of upper

limit to the agnostic neuracles’ likely success in a real-time context given the fact

that overfitting and synchronization problems discussed in Chapter One, Section 2

have not been addressed. This motivates a search for anti-correlated networks that

may drive a physical neuracle.

3.3.6 Anti-Correlated Networks for Physical Neuracles

The first two sessions of the experiment were used to bin channels into two cate-

gories: Task+ and Rest+. To create these two channel-clusters, I first computed

the mean linear slope for each of the four trials of the resting task for each subject
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Table 3.1: Rest+ group. Channels which show a statistically significant increase
in oxygenation during rest trials for the selection sessions. Statistical significance
measures here and in the table below are conservative, so that p < 0.001 means the
channel was significant at this threshold for both session 1 and 2.

Ch. MNI p Brodmann
18 -51,36,19 <0.001 46 - dlPFC
28 -51,45,-6 <0.001 47 - dlPFC
37 -22,57,32 <0.01 9 - dlPFC
36 2,60,32 <0.01 10 - vmPFC
38 -42,42,32 <0.01 46 - dlPFC
39 -55,17,31 <0.01 9 - dlPFC
49 -44,52,6 <0.05 10 - vmPFC
47 2,68,8 <0.05 10 - vmPFC
48 -24,68,9 <0.05 10 - vmPFC

Table 3.2: Task+ group. Channels which show a statistically significant increase in
oxygenation during addition trials for the selection sessions.

Ch. MNI Brodmann
51 -64,-2,6 <0.0001 22 - Temporal Lobe
31 67,-35,30 <0.001 40 - Wernicke’s area
52 -69,-27,1 <0.01 21 - Temporal Lobe
50 -57,28,7 <0.01 45 - Broca’s Area
43 66,-4,5 <0.05 22 - Temporal Lobe
21 69,-13,-10 <0.05 21 - Temporal Lobe

and for each channel in both session 1 and session 2. I computed the same statistic

for the addition trials, and evaluated the statistical significance of each channel in

a Student’s t-test that compared the slope of the addition and resting trials. I thus

conducted a t-test (n = 50 subjects) 52 times (once for each channel) twice (once for

each session). To meet the criteria necessary for inclusion in either anti-correlated

network subset, the channel needed to be statistically significant for both session

1 and 2. To be included in the Rest+ channel set, the slope of oxygenation values

needed to be statistically significantly higher in the resting condition, and vice versa

for a channel’s inclusion in the Task+ channel set. All Brodmann and MNI coordi-

nates for the Rest+ and Task+ channels are shown in tables 3.1 and 3.2, where the

channels are ranked in order of statistical significance.

Next, I normalized the values so that each channel was set to fluctuate be-

tween 0 and 1, and then plotted the two channels on an area chart, side by side,
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Figure 3.3: Selection channels: The time-course of two anti-correlated channel clus-
ters in fNIRS data. The y axis shows change in oxygenated hemoglobin and the x
axis shows change in time. The data has been bandpass filtered (between 0.01 and
0.1 hz) and adaptively filtered. It is sampled at 0.5 hz, and so there are 350 seconds
= 6 minutes of data. The green channel shows the Rest+ group (Table 3.1) and
the blue channel shows the Task+ group (Table 3.2). The thickness of the chart
represents the standard error of data at that time-stamp.

where the middle of the area represents the channel’s mean value, and the thick-

ness represents the standard error of values (this is a standard way to represent

fNIRS data as overlap tends to indicate high subject variation). Figure 3.3 plots

this visualization for session 1 and session 2. The anti-correlations demonstrated in

these visualizations suffer a selection bias given that statistics from these datasets

were used to select channels. Figure 3.4 plots this visualization for session 3 and 4.

The anti-correlation exhibited in these networks represents a statistically valid effect

since previous sessions two weeks earlier were used to select the channels. Therefore,

this selection likely persists in future experiments.

The mean Pearson correlation coefficient between the averaged oxygenation

over the course of the six minute time-series of Rest+ channels and Task+ channels

was -0.8416 for session 1, -0.8280 for session 2, -0.6179 for session 3, and -0.6279 for

session 4. Table 3.3.6 shows anti-correlation between these two between-subject av-

eraged channel sets (mean-a), and lists them together with the mean anti-correlation

of Rest+ and Task+ channel-sets for each subject (mean-b). This latter number

(mean-b) is the more valid estimate of the likely effectiveness of a physical neuracle

calibrated to detect whatever trade-off in the user is defined by this pair of anti-
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Figure 3.4: Evaluation channels: A statistically valid anti-correlation effect between
Rest+ and Task+ channel sets. As with figure 3.3, P means phone number trial, A
means addition trial, R means resting trial. All trials are 20 seconds long.

correlated networks because averaging across users cancels noise. It is promising that

for some subjects, the mean anti-correlation was as high as -0.9, but discouraging

that for some subjects, these channel sets were positively correlated to each other.

For these subjects, the positive correlation between these channel sets may be due

to that session’s failure to arrange the fNIRS probes to interrogate brain activation

as opposed to system artifacts (which should all be positively correlated). Future

experiments might mitigate this effect by using a live measure of anti-correlation to

determine whether or not probe setup needed to be changed at the beginning of the

experiment.

These results suggest generic probe locations likely to portray this anti-

correlated network for most users. As illustrated in figures 3.4 and 3.3, the anti-

correlation effect is strong and persists to new sessions, showing a physical trade-off

in the cerebral work accomplished by the regions listed in table 3.1 (Rest+) versus

table 3.2 (Task+), and resolving question 1 in the introduction. A physical neu-

racle may therefore simply measure which channel cluster has higher oxygenation

consumption to classify the user’s state. For reasons discussed in the next section,

I recommend designating ch.36 (measuring the right hemisphere vmPFC at B.10

(MNI: 2,60,32)) as default Rest+ channel, and ch.51 measuring the left hemisphere

temporal lobe at B.22 (MNI: -64,-2,6) as the default Task+ channel.
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Table 3.3: The global mean (mean-a) and subject mean (mean-b), min, and standard
deviation of Pearson correlation coefficients between Rest+ and Task+ for each
subject for the four sessions.

s mean-a mean-b max min std
1 -0.84 -0.47 -0.92 0.78 0.43
2 -0.83 -0.54 -0.94 0.42 0.32
3 -0.62 -0.49 -0.95 0.80 0.38
4 -0.63 -0.44 -0.93 0.72 0.40

3.4 Discussion

The results suggest the feasibility of a physical neuracle that detects shifts in the

orientation of a user’s attention on the basis of anti-correlated networks. Notably,

when all data are averaged for all 50 subjects, the data show that these two sets

of channels are strongly anti-correlated (∼-0.73 on average without any downsam-

pling), and that the signal oscillates at a rate roughly equal to the task length (in

this case, 20 seconds). The mean anti-correlation for each subject was weaker (∼-

0.49 on average), but it is worth emphasizing that perfect -1.0 anti-correlation may

not be necessary for an algorithm that perfectly portrays shifts in the orientation

of user attention. In fact, perfect anti-correlated entanglement between two chan-

nels would suggest that all information about one probe is contained in the other,

rendering one redundant.

Engineers may question the utility of monitoring whether or not the user is

at rest or performing a task, which may be known about the user by simpler means,

e.g. (keyboard input, eye-tracking, or a camera). But variations in these networks

are not entirely correlated with the performance of a task, as validated by the failure

to build task vs. rest agnostic neuracles with perfect classification accuracy. The

anti-correlated networks describe a pulse in the brain, which can be manipulated by

changing the environment’s demands and sensory information load. But barring an

extreme intervention (e.g. closing eyes), the pulse also follows its own spontaneous

prerogatives, and contains information not yet clear to science. A third and hitherto

neglected condition may help understanding what these networks measure, shedding

light on question 2.
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In addition to the exogenous and goal-oriented addition condition used to

determine Task+ probe configuration, this experiment also included an endogenous

and goal oriented condition, where the participant sub-vocally rehearsed their phone

number (P). In figures 3.3 and 3.4, there is a sharp change in oxygenation values

only when one of the endogenous conditions follows or is followed by the exogenous

condition. In other words, when either the rest (R) or phone-number task (P) is

preceded by the other endogenous task, oxygenation values in both channel sets

remain constant on average, and the two anti-correlated networks do not shift.

Pictorially in figures 3.3 and 3.4, this is represented by an open mouth with the green

and blue lines as lips in the middle of the experiment. This suggests that the chosen

channel sets are specifically tuned towards the origin of the data being computed

on: endogenous vs exogenous. In a live HCI scenario, this anti-correlated network

may therefore supply the foundation for a neuracle that predicts the moment a user

zones out of a task seconds prior to the moment when the user zones out.

3.4.1 Probe Configuration for Detecting TPN vs DMN

The fNIRS correlates referenced in Tables and 3.1 and 3.2 are mostly consistent

with a previous investigation of task-dependent anti-correlation in fNIRS data, and

the disagreements are worth analyzing. Harrivel et al. (2013) investigated anti-

correlation between medial frontal gyrus (MFG) as a rest-positive node and dor-

solateral prefrontal cortex (dlPFC) as task-positive node [61]. In that experiment,

sites were referenced according to the International 10-20 system, typically used

in EEG experiments. The MFG node in that experiment measured FPz and FP2,

which closely maps to Brodmann region 10 (B.10). This experiment affirms the

choice of MFG as a DMN location given that channels 36, 49, 47, and 48 were all

binned into the Rest+ channel set. The dlPFC node in that experiment interrogated

site F4, which maps onto B.46.

In our experiment, no dlPFC node was placed in the Task+ group. In fact,

two channels measuring B.46 were placed in the Rest+ group along with two fur-

ther channels also measuring the dlPFC. This disagreement likely depends on the
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different task used in the present experiment and the previous one, and suggests

the exclusion of the dlPFC from both a generic Task+ set (as suggested by [61])

and from the Rest+ set (as suggested by our experiment). A generic set of exoge-

nous regions should instead limit itself to regions with a more fundamental role in

sensory processing, such as the temporal lobe at B.21 (see table 3.2). The fNIRS

measurements of the dlPFC may instead drive an orthogonal physical dimension,

e.g. describing the relative distribution of deliberate and top-down vs. automatic

and bottom-up processing.

No matter the interpretation, this disagreement suggests the exclusion of the

dlPFC from both a generic Task+ set, as suggested by Harrivel, and from the Rest+

set, as suggested by our experiment. Moving forward with physical neuracles, it may

be useful to disentangle the endogenous vs exogenous dimension from its parent task

vs rest dimension. A user can compute on exogenous sensory data in a state of rest,

and a user can engage endogenous memory stores in the service of a task. A generic

set of exogenous regions should exclude regions with apparent involvement in both

endogenous and exogenous involvement such as the dlPFC, and limit itself to regions

with a more fundamental role in sensory processing, such as the temporal lobe

locations at channels 21, 43, 50, and 52. The anti-correlated endogenous channel

set should also skip the dlPFC, electing instead to measure channels 36, 47, 48, and

49 at Brodmann region 10, which corresponds to the vmPFC of the default mode

network, validated by Harrivel’s experiment, and fMRI literature.

The fNIRS measurements of the dlPFC may instead drive an orthogonal

physical dimension, describing the relative distribution of top-down vs. bottom-up

processing. In a Bayesian framework, top-down networks predict data driven from

the bottom-up. In cases when surprising data dominates the brain’s predictions

and controls its response, the user is in more of a bottom-up state, and in cases

where information chaos is held at bay by an experienced top-down model, the user

is in more of a top-down state. The two endogenous conditions (phone-number vs.

controlled rest) of this experiment differ along this dimension because the continuous

(top-down) rehearsal of a sequence of well-known numbers limits the possibility for
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bottom-up memory data to penetrate the system and coerce interest from the default

mode network. On the other hand, the absence of the sub-vocal rehearsal procedure

in the controlled rest period invites mind wandering from the default mode network,

which appears to involve involuntary bottom-up processing on endogenous data.

However, the experimental data suggests that this finding may be due to individual

variation, given the inclusion of dlPFC as Rest+ node. Knowing that more tasks

were about to follow, many participants likely did not engage the DMN during

the resting period. Instead, they likely performed an active top-down executive

monitoring with their dlPFC.

The physical neuracle in the next chapter has not yet been implemented and

tested. As is clear from the pseudocode, the algorithm avoids machine learning at

network, segmentation and classification levels, thereby bypassing all issues refer-

enced in Chapter Two, section 1. Instead, the BCI saves its machine learning card

to solve the problem of updating system properties and output at design and ap-

plication levels in response to ground truths about the user’s state known from the

physical neuracle. The associated bidirectional BCI then uses machine learning to

transform the user’s measured physical dimensions into more desirable dimensions

by changing some property in the interaction.
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Chapter 4

Specification of a Physical

Paradigm for BCI

This chapter aims to show how physical, mental, neuracle, and interface levels

of BCIs can be bound in a cohesive Bayesian information processing framework,

as promised by the unity thesis. It gives an algorithmic outline for a real-time

physical neuracle calibrated on cyclical activity in anti-correlated networks in fNIRS

data. The algorithm is based on neuroimaging literature in the first two chapters,

the discovery of anti-correlated networks in Chapter Three, and the introspective

studies in Chapter Seven. As shown in figure 4.1, the aim of the algorithm is to find

a direct mathematical mapping between anti-correlated networks in fNIRS data and

introspectively real dimensions of consciousness.

In this algorithm, I assume a BCI has three fNIRS probes interrogating

brain activity at the dorsolateral prefrontal cortex (dlPFC ), ventromedial prefrontal

cortex (vmPFC ), and temporal lobe (tl) as well as fourth probe measuring systemic

response at a site not influenced by brain activity (global).

1. The dlPFC-probe measures oxygenation changes at the top of the forehead

at the dorsolateral prefrontal cortex, at Brodmann area 46. As discussed

in Chapter One, neuroimaging data (from fNIRS and fMRI) implicates this

region for executive top-down functions.
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Figure 4.1: A function needed in a physical neuracle measuring fundamental dimen-
sions of consciousness.

2. The vmPFC-probe measures oxygenation changes above the eyebrow at the

ventromedial prefrontal cortex, at Brodmann area 10. As discussed in Chapter

Three, neuroimaging data (from fNIRS and fMRI) implicates this region’s in-

volvement in the default mode network which implements automatic (bottom-

up) mind wandering functions.

3. The tl-probe measures oxygenation changes by the ear at the temporal lobe, at

Brodmann area 22/21. Neuroimaging data (from fMRI) implicates this region

as a fundamental router in sensory processing [12].

4.1 Physical Neuracle Specification

The algorithm assumes oxygenation changes in the dlPFC and vmPFC are both

anti-correlated with the tl, but makes no assumption about possible anti-correlation

between dlPFC and vmPFC. I therefore form two anti-correlated networks (dlPFC-

tl) and (vmPFC-tl), each including one endogenous node (dlPFC or vmPFC ) and

one exogenous node (tl). The results in Chapter Three suggest that the default

operation of the brain is to cycle rhythmically back and forth between the exogenous

and endogenous node in one of these networks, increasing the level of oxygen in the

exogenous or endogenous node at an average rate of once every twenty seconds. As

illustrated in figure 4.3, the analysis of this algorithm is partitioned into five distinct

levels of abstraction, where the first three levels describe how to extract plausible
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Figure 4.2: Physical Paradigm for BCI

user dimensions in a physical neuracle, and the last two levels describe how to act

on changing values in these dimensions to the user’s benefit.

1. At the Signal Level, probe configuration and signal processing algorithms iden-

tify pairs of regions with maximum anti-correlation, and outputs<user.networks>,

as a set of time-series describing pairs of anti-correlated networks.

2. At the Segmentation Level, the time-series of user.networks is transformed into

a set of segments with mathematical features, using heuristics for partitioning

data at the moment control over oxygen is ceded from one network to its

competitor.

3. At the Classification Level, the current <user.features> object is analyzed to

produce <user.classifications>, which consists of the user’s state along several
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dimensions.

4. At the Design Level, the current <user.classification> object is analyzed to

generate values in an <application.design> object which consists of current

settings to generic trade-offs in design choices for a user interface, e.g. the

user’s tolerance to interruption. The mapping between <user.classifications>

and <application.design> changes iteratively based on <user.behaviors>.

5. At the Application Level, a brain-computer interface determines a mapping be-

tween system changes in the application and changes in <application.design>.

It may also trigger more custom changes based on fluctuations in<user.dimensions>.

4.2 Signal Level

The goal at the signal level is to output as many anti-correlated network pairings

as possible. The rationale for conducting probe configuration according to this

heuristic is five-fold.

1. Customization argument: With a function that evaluates the effectiveness of

probe placement with as little as 5-10s of fNIRS data, it is easy to execute an

adaptive probe placement algorithm.

2. Reproducibility argument: Uniform probe configuration is possible even if dif-

ferent subjects have distinct neuroanatomy.

3. Filter argument: A change in one channel without concomitant change in the

competitor may indicate that change is due to noise and should be filtered.

4. Information argument: Given that memory and processes are encoded as rela-

tionships between distant matter, features comparing signals of two competing

networks may provide information not available by single channel analysis.

5. Reliability argument: The network’s overall anti-correlation can be used as

a confidence measure, indicating how much fNIRS classifications should be

trusted in relation to other sensors, as well as how risky adaptations can be.
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Algorithm 2 processes the data using the techniques of Chapter Three col-

lected from two endogenous channels (vmPFC and dlPFC ) and one exogenous chan-

nel (tl). The experiment adjusts these channels to maximize anti-correlation between

endogenous and exogenous nodes.

Algorithm 2 Physical Neuracle at Signal Level

procedure ConfigureFNIRS(user, fnirs)
loop:

b10← some vmPFC channel in Table 3.1
b21← some temporal lobe channel in Table 3.1
b46← some dlPFC channel in Table 3.1
global← systemic fNIRS signal
Preprocess(b10, global)
Preprocess(b21, global)
Preprocess(b46, global)
networks.vmpfc-tl← (b10, b21)
networks.dlpfc-tl← (b46, b21)
If anti-correlation is weak goto loop
return user.networks

procedure Preprocess(brain, global)
BeerLambert(brain)
bandpass(brain, 0.01, 0.1)
LMSAdaptiveFilter(brain, global)
movingAverage(brain, 0.5)

The physical neuracle at the signal level yields two anti-correlated networks

determined on the basis of data from the experiment in Chapter Three.

1. Anti-correlated activity in networks.vmpfc-tl describes back-and-forth action

between B.10 (or vmPFC, which partakes in the default mode network) and

B.21 (or tl/temporal lobe, which is a fundamental sensory processing hub).

2. Anti-correlated activity in networks.dlpfc-tl describes the degree to which the

B.46 (or dlPFC, which partakes in executive control networks) depends on

information mediated from B.21.

4.3 Segmentation Level

At the segmentation level, this physical neuracle attempts to partition anti-correlated

network data into its constituent cycles. The measured low frequency oscillation de-
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scribes a slow cortical potential [72] in the brain. In the experiment of Chapter

Three, the averaged network increased oxygen measures for 20s, before relegating

control of the oxygen supply to the anti-correlated network (see figure 3.3). Acting

on this averaged input, the algorithm given below would produce segments of ap-

proximately 20 second lengths. However, the key to the algorithm is that it adapts

segment length depending on live fNIRS data.

Algorithm 3 Physical Neuracle at Segmentation Level

procedure extractFeatures(networks)
window← 5
analyzeNetwork(networks.vmpfc-tl, window)
analyzeNetwork(networks.dlpfc-tl, window)
return networks

procedure analyzeNetwork(network, window)
length← network.length
masterSlice← network[0][length− window...length]
slaveSlice← network[1][length− window...length]
masterSlice.slope← slope(master)
slaveSlice.slope← slope(slave)
if masterSlice.slope > slaveSlice.slope then

origin.name← ”master”
network.origin← network.master

else
origin.name← ”slave”
network.origin← network.slave

if network.origin.name 6= origin.name then
network.lastLength← length− network.start
network.start← length
network.switching ← True

else
network.switching ← False

network.master← network[0][network.start...length]
network.slave← network[1][network.start...length]
network.master.slope← slope(master)
network.slave.variation← stdev(master)
network.slave.slope← slope(slave)
network.slave.variation← stdev(slave)
network.length← length - start
network.networkCorrelation← Math.abs(correlation(signal[0], signal[1]))
network.cycleCorrelation← correlation(network.master, network.slave)

Algorithm 3 segments the networks into cycles by comparing the slope of

the last window seconds of activity at the two probe locations. Here, window is a
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somewhat arbitrary value set to five, balancing a trade-off between the immediacy

and accuracy of segmentation; more experimentation is necessary for an optimal

setting. The segmentation level determines two high level network properties that

determine on which time-series the classification level should extract features.

1. The network.master variable is set to hold whichever of dlpfc-tl and vmpfc-tl

has higher anti-correlation.

2. The network.master.origin variable is set to hold whichever time-series of the

temporal lobe and its endogenous competitor (vmPFC or dlPFC) has higher

slope.

4.4 Classification Level

Given the last k seconds of data stored as a segment in network.origin.master vari-

able, the classification level produces a set of dimensions, whose values can be

mapped onto design imperatives at the design level. Some dimensions are crafted

using domain expertise, and their meaning can be reasoned with at the design level.

Other dimensions are inspired by a process of optimizing signal features for agnos-

tic neuracles in Chapter One. Yet other dimensions require playful introspection

as enabled by the Neuracle software. The stated meaning of all dimensions should

be regarded as hypotheses, which will be refined as knowledge of the brain’s func-

tion accrues. This section enumerates thirteen dimensions and reasons about their

physical meaning, before giving the algorithm for extracting them from the net-

work.origin.master object. The following labels are used to further specify how the

dimension should be computed.

1. Dimensions computed for the whole session of data are labeled as (S) and

dimensions computed for the current cycle of data are labeled as (C).

2. A normalized dimension means that a cycle attribute has been normalized

in relation to the whole session, so that 0 is the mean value, 1 represents a

standard deviation above the mean, and -1 is a standard deviation below.
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Figure 4.3: A physical neuracle

3. Attributes with (H) incorporate information about the history of this signal

for the user.

1. Master [(vmpfc-tl or dlpfc-tl), C, <user.master.name>]. The master network

dimension may describe whether the user is in a default mode network state

(vmpfc-tl) versus an executive attention state (dlpfc-tl). In the proposed algo-

rithm, master network is set to whichever network has higher anti-correlation

strength. A strongly anti-correlated network (suggesting two distant regions

in communication or competition) is likely to be performing considerable com-

putation, and thereby be the master of attention. The subsequent dimensions

are computed only on the master network. 1

2. Origin (endogenous or exogenous), C, <user.master.origin> The region with

higher slope of two competitors in the master network indicates whether or

not the user is in a endogenous or exogenous mode of cognition. Effective

cognition combines concrete, immediate exogenous sensory-motor mappings

with more abstract, delayed/executive endogenous memory-plan mappings. A

1 Directionality [top-down or bottom-up] may be the same dimension as Master, so that
directionality is bottom-up when master is vmpfc-tl and directionality is top-down when master is
dlpfc-tl. This way of thinking about the difference between possible master networks may be clearer
to neuracle designers, who can think about the master of a given mental state as being controlled
deliberately by the user’s ‘free agency’ or as set by forces beyond its control, external or internal
depending on the current value to the origin dimension.
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second of brain activity contains many back-and-forth messages between more

exogenous and endogenous networks that would be better described with an

EEG. However, this dimension captures a low frequency oscillation between

these networks, perhaps measuring which network currently owns conscious

attention. The frequency is variable, but present data and fMRI literature

[107] indicates that brains cycle between endogenous and exogenous modes of

the master network at rates 20 second long on average. It is not clear what

this means as a matter of conscious attention.

3. Velocity (normalized), C, <user.master.velocity> The user’s master net-

work changes its measured oxygenation with a particular velocity or slope.

The velocity attribute is computed on the master’s master region from mas-

ter.origin.slope, which is always the larger of the two slopes in the network. It

is not clear what high velocity signifies about the user, but Chapter Five gives

data illustrating that this quantity is high when brains immediately switch be-

tween endogenous and exogenous mode by opening or closing their eyes. In the

extreme case of opening eyes, the entire visual scenery must be recomputed,

accounting for the rapid change in oxygenated values. Potentially, velocity is

high when the state of the brain is changing rapidly. The neuracle described

here is designed to reset slope computation (i.e. change the window of analy-

sis) every time control shifts between the exogenous and endogenous mode of

the network. This design choice means the velocity measure is computed on

a small (5s) window length at the beginning, and on a longer window length

at later points of the sub-networks action. The velocity attribute captures the

strength of attentional shifts, and is less sensitive to changes in velocity later

in the trial.

4. Symmetry, (0,1), 2C, <user.master.symmetry> Unlike the other cycle di-

mensions, symmetry is computed only once a cycle, at the moment control

is relegated from some network to its competitor. Symmetry is 0 when the

present cycle was exactly as long as the previous anti-correlated cycle, and
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holds the number of seconds apart otherwise. Symmetry may be high when

the relationship between two anti-correlated networks is less adversarial and

more an act of concerted communication. Imagine one network (a) changes

internal neuronal configurations for some period of time (a’) until it reaches

some energy limit and is not refueled. At this point, the competitor network

(b) begins changing its internal configuration for some period of time (b’). If

(a’) and (b’) are similar, then it is likely that the amount of internal recon-

figuration by (b) depended on the amount of internal reconfiguration in (a),

especially given a strong interpretation of the Bayesian Brain Hypothesis. On

the other hand, symmetry should be low when the brain is biased towards ac-

tion in just one of the two anti-correlated regions. Thus, a low symmetry value

indicates a purer and more sustained version of an endogenous / exogenous

state.

5. Flow, seconds, C, <user.master.flow> The flow dimension captures the num-

ber of seconds a user has remained in a given network. It can be thought of as

a timer that begins when there is a change to which of two anti-correlated net-

work has the larger slope, and continues until there is another shift in network.

It is unclear if a brain region measured by fNIRS can increase its oxygenation

content indefinitely. If not, it may be necessary to modify the segmentation al-

gorithm so that this Flow attribute approximates the psychological construct

[32].

6. Shift, (True/False), C, <user.master.shift> Shift is true exactly once a cycle

and false at all other points. This information is also contained in the origin

dimension which switches from exogenous to endogenous mode exactly once a

cycle, and therefore exists as a convenience in the design level. The lag time

between a measured shift and a real shift in attention is unclear. Conventional

wisdom suggests that the BOLD effect has a 3-6 second delay.

7. Variation, (normalized), C, <user.master.variation> The variation dimen-

sion holds the normalized standard deviation of the cycle’s raw oxygenation
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content. It is not clear what high signal variation indicates about the user’s

state, but this feature was found to be useful fodder for an agnostic neuracle

in Chapter One. High variation may indicate noise or movement, but effective

filters at the signal level could yield a variation measure that reflected only

within region brain activity. For example, if < user.master > = vmpfc − tl

< user.origin > = endogenous, then high variation may indicate an unusu-

ally active, and potentially more creative or anxious, default mode network.

Variation may correlate with the high frequency oscillations present in EEG

data.

8. Reciprocity (0,1), C, <user.master.confidence> The Reciprocity dimension

is the inverse of anti-correlation, so that reciprocity is 1 when anti-correlation

over the current cycle is -1, and 0 if anti-correlation is greater than or equal

to 0. Reciprocity likely captures similar information to Symmetry, gauging

the amount of computation in the network that depends on the competitive

network’s previous output. But unlike Symmetry, Reciprocity captures infor-

mation about competitor network from the current cycle.

9. Confidence (0,1), C, <user.master.confidence> The confidence measure pro-

vides the design level with a measure for how much to trust the other dimen-

sions. Confidence is set to 1 when the session and cycle correlations are both

-1, indicating information confirmed by two sources. When anti-correlation is

weaker, confidence is lower. But the confidence function is not trivial since

confidence should also be high when cycle correlation is weak but the session

correlation is strong, especially if flow is high. This scenario may indicate

parallelism between otherwise competitive networks.

10. Parallelism (0,1), C, <user.master.parallelism> This attribute is set to 0 in

the event of anti-correlation in the master network. It is 1 when two typically

anti-correlated networks are perfectly correlated with each other. High par-

allelism likely indicates undesirable sensitivity to system artifacts and should

only be trusted in the event that globalConfidence is high, indicating parallel
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activity in a system that is otherwise serial. It is not clear what, if anything,

may cause a suspension to anti-correlation, but as described in Chapter Three,

expert meditators have reduced anti-correlation in a resting state, and thus

more parallel activity [85]. This may be an interesting dimension for long term

optimization.

11. Consistency (0,1), S, <user.master.consistency> This attribute measures

the consistency in oscillations over the course of the session. High consistency

may signify two different properties in the user depending on user.master.name.

If the dlPFC-tl is the active master network, high consistency may indicate

a longer period of sustained top-down attention, with consistent smart ex-

changes between exogenous and endogenous processes. If the vmPFC-tl is ac-

tive, high consistency may indicate a duller day-dreaming state and a boring

task, causing routine activity in the default mode network to cycle in and out

of spatiotemporal existence. No matter the master network, low consistency

may indicate a more creative, high entropy state (see below).

12. TimeToShift (seconds), C, <user.master.timeRemaining> This attribute es-

timates the number of seconds until a network releases control to its competi-

tor on the basis of the previous cycle’s length. It should only be trusted when

consistency is high. The attribute can be leveraged to time digital events to

better coincide with the brain’s rhythms.

13. Entropy C, H, <user.master.entropy> A sort of inverse to consistency, en-

tropy measures the unpredictability of a given slice of fNIRS data. It depends

on the other dimensions and is therefore computed last. It is computed as the

cycle shifts to the competitor, just before the cycle data is saved to the session.

A Bayesian Belief updating algorithm with the dimensions in H (containing

all cycles ever observed about that user) as its prior, predicts the dimensions

in C, and updates to some new posterior distribution. The KL-divergence (see

Chapter Two) in this transformation is saved as an attribute describing the

user’s state. It is possible that experience or consciousness feels more pedes-
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trian when entropy is low, whereas it registers as an introspectively higher

temperature in cases when entropy is high, perhaps indicating more overall

change in physical space over time (computation) [28].

Algorithm 4 extracts these thirteen features from the <user.networks> ob-

ject.

Algorithm 4 Physical Neuracle at Classification Level

1: procedure classifyUser(user.networks, user.history)
2: vmpfc− tl← user.networks.vmpfc− tl
3: dlpfc− tl← user.networks.dlpfc− tl
4: classify(dlpfc− tl)
5: classify(vmpfc− tl)
6: if dlpfc-tl.confidence > vmpfc-tl.confidence then
7: user.master ← dlpfc− tl
8: else
9: user.master ← vmpfc− tl

10: if user.master.switching then
11: recordCycle(user.master)

12: procedure recordCycle(network)
13: cycle.lastLastLength = network.lastLength
14: cycle.length = network.lastLength
15: cycle.symmetry = |lastLastLength− network.lastLength|
16: cycle.slope = network.origin.slope
17: cycle.variation = network.origin.variation
18: network.session.add(cycle)

19: procedure classify(network)
20: cycles← network.session
21: network.flow ← Normalize(network.length, cycles)
22: network.timeRemaining ← mean(cycles.length)− network.length
23: network.velocity ← Normalize(network.origin.slope, cycle)
24: if network.antiCorrelation < 0 then
25: network.confidence ← |network.antiCorrelation| ∗ a +

network.velocity ∗ 1− a
26: network.parallelism← 0
27: else
28: network.confidence← 0
29: network.parallelism← network.antiCorrelation
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4.5 Design Level

If work at the classification level transforms fNIRS data into user dimensions that

can be reasoned with effectively at the design level, the design level transforms

user dimensions into generic imperatives about how to adjust data, processes, and

interaction in the application level. This level of abstraction simplifies work for the

software engineer who need not understand how the brain works when upgrading

their application for the age of BCI. Instead, this engineer may simply add listeners

to the application, which tracks changes in the design imperative object and triggers

changes to the application’s settings. If dedicated to improving state of the art

BCI, the application should respond to the design level with a number scoring the

measurable effectiveness of human-computer interaction at a given moment (which

it may know from keyboard/mouse input or other settings. I organize these design

imperatives into three design imperative objects, with four properties.

1. Imperative: This constant string value holds the design decision which

should be acted on when value is positive.

2. Value: This normalized floating point value is positive when the design level

believes in imperative, and negative when design level believes in the inverse

of the imperative. It is zero when agnostic about the imperative.

3. TimeToChange: This integer represents the number of seconds until the

application should act on the imperative. When zero, the design level’s rec-

ommendation is to act immediately on its imperative.

4. Confidence: This floating point ranges from 0 to 1 in proportion to the

confidence of its current setting to TimeToChange and Value. A confidence

of 1 means these decisions can be trusted.

The responsibility of the design level is to set each of these four properties on the

basis of user classifications on three distinct design objects:
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1. Continue is positive when the user appears to be in a desirable state, and

negative when the user is in an undesirable state, and system settings need not

change. The physical neuracle in this paper is engineered for scoring attention

along a positive-to-negative axis, but improved physical neuracles may be able

to score positive and negative affect.

2. Simplify has a positive value when the user appears to be in a cognitively

overworked state, warranting simplification in the user interface, and negative

when the user appears to be in a bored state, which suggests that task demands

can be escalated.

3. Interrupt has a positive value at moments when the physical neuracle deems

the user’s brain prime for interruption, and negative when the user is unlikely

to be able to process additional information.

4.5.1 Imperative Functions

The design level needs a function that takes as input <user.classifications> and

assigns a high continue.value when the user is in a high quality attentional state,

and a negative value when the user is in the worst possible attentional state. This

function is challenging to hardcode, but the algorithm need only require reasonable

initial settings, before it can be iterated upon with machine learning algorithms sen-

sitive to feedback from the application level. The most desirable attentional state is

the exogenous flow state, where attention is effortlessly wedded to the environment,

without consistent regression into endogenous, default mode networks. Instead of

giving code for these imperative function (as I did for the previous physical neuracle

layers), I provide a table, indicating how I expect the design object ought to to

fluctuate in response to changes in a particular dimension.

The tables 4.1, 4.2, and 4.3 thus contain predictions for the valence of weights

(w) for a hypothetical algorithm that multiplies some dimension (d) and gives the

product design.value (v) (w*d = v). When the weight in the table is negative (-),

imperative.value is higher when the dimension is lower; if positive (+), the values
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Table 4.1: Weights for determining continue.value, simplify.value, and inter-
rupt.value from dimensions

Dimension Continue Simplify Interrupt
Master dlPFC dlPFC vmPFC
Origin exogenous endogenous endogenous*
Velocity + - -
Symmetry -* -* +
Flow + 0 -
Variation + 0 -
Reciprocity - -* -*
Parallelism + -* -
Consistency - -* -*
Entropy + + -

covary positively; if 0, I am too uncertain to form a hypothesis. A string value

indicates the value for which the imperative is higher. If these weights have an

asterix (*), then the predicted weight depends on the dimensions.master.name, e.g.

I expect a positive weight if the user is in the dlPFC network, and a negative weight

if the user is in the vmPFC network. Similarly, if these weights have two asterixes

(**), then the valence of the weight depends on dimensions.master.origin (whether

the user is in an endogenous or exogenous mode of the network).

Table 4.2: Weights for determining design.confidence from dimensions
Dimension Weight Rationale
Symmetry + Trust adaptation when system understands user state.
Variation - Leave user alone if their signal is noisy (or they are computing).
Consistency + Interrupt user when the system can predict user’s state.
Confidence + Change interface only when system is confident.

Table 4.3: Weights for determining design.TimeToChange from dimensions
Dimension Weight Rationale
Velocity - Don’t act since information is currently obtained about user’s state.
Flow - Do not change if the user is in flow.
Shift True Before user deepens a state, change conditions.
Parallelism - Do not interrupt user while computing.
TimeToShift - Interrupt user when network is about to shift.
Entropy - Do not alter conditions during creative states.

An evaluation of the reported physical neuracle awaits future work. The

section should therefore be interpreted as mathematically precise hypotheses as
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opposed to factual statements about brain-computer interfaces. The next chapter

argues that the wisest approach towards evaluating these hypotheses consists not in

implementing and evaluating the algorithm in traditional user studies. Instead, the

best approach is to distribute software for introspection and rapid hypothesis-testing

and produce research contexts where other BCI engineers are empowered to study

themselves. Put another way, it is my hope that researchers replicate the steps I

took to produce this algorithm as opposed to replicate the algorithm itself.

4.6 The Application Level

Benefiting from a mapping logic between classifications and imperatives imple-

mented at a system wide design level, a brain-augmented application can focus on

the problem of mapping the imperative’s changing instruction (simplify, continue,

and interrupt) onto system parameters. Chapter One gave four examples of implicit

BCIs at the application level. If the logic of the design level is sufficiently broad,

then it should be possible to redesign these four interfaces so that they operate on

the instruction of the imperative object.

1. The dynamic difficulty adjustment engine implemented in the UAV experiment

would use the simplify object to determine whether to add or remove aircraft

from user jurisdiction. With a positive simplify value, the simulation would

remove aircrafts from the screen, and vice versa.

2. In the target expansion technique implemented in the bubble-cursor experi-

ment, the simplify object would be used to control the expansion width of

the mouse. With a positive simplify value, the interface would increase the

selection range of high priority targets, and vice versa.

3. The route recommendation engine implemented in the first Google Glass ex-

periment would use the simplify object to determine whether to provide a

complex-but-fast set of turns or a simple-but-slow set of turns.
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4. The cognitive heatmap implemented in the second Google Glass experiment

would use the continue object to determine how to tag associated movement

data in a map. When continue was positive, the cognitive heatmap would place

a marker at the corresponding user location so that the user could revisit the

associated images captured by Google Glass at that point of interest.

A third Google Glass experiment implemented by Afergan would have made

use of the interrupt object [5]. In that experiment, users completed a primary task,

in which they acted as campaign workers, delivering election material to houses they

passed in a simulation. Simultaneously, users also completed a secondary task with

lower priority that was controlled by the information they received in Google Glass.

The instruction in Google Glass would inform them to deliver additional packages

to houses satisfying certain criteria. However, this instruction would distract them

from the more important primary task if the user lacked the cognitive resources to

handle an added decision making burden. With the physical neuracle specification

given in this chapter, this experiment could be redesigned to determine whether to

overlay Glass information using the instruction mediated by the interrupt object.

When interrupt was positive, the simulation would overlay potentially distracting

information enabling the user to complete the secondary task.

The physical neuracle can therefore solve the existing implicit BCI problems

described in Chapter One’s agnostic paradigm. And it does not suffer any of the

five problems that limit agnostic neuracles described in Chapter Two. Instead, the

physical neuracle depends on a real understanding of the relationship between os-

cillations in the brain and cognitive functions. This dissertation has advanced a

physical model of the brain wherein networks become active if they can reduce the

entropy of endogenous or exogenous signals. When there is an opportunity to reduce

entropy in exogenous signals, the brain engages a family of task-positive networks.

In the absence of such external demands, the brain begins to reduce entropy in en-

dogenous signals, generating memories, ideas and fantasies that are consistent with

the history of the system and its predilection to survive and replicate. The observed
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effect of anti-correlation between these two systems (task-positive and default-mode

networks) gives the foundation for building physical neuracles.

Since the given design for a physical neuracle describes the relationship be-

tween information processing and detected signals in the brain, it is possible to

build a new sort of brain-computer interface, which adjusts inputs to the brain in

a feedback loop with measurements of its state, driving it towards more desirable

mental states. Because this system benefits from a physical understanding of the

relationship between fNIRS-detected signals and neuro-cognitive events as the ener-

getic byproduct of hierarchically layered entropy suppression, the bidirectional BCI

can use machine learning at the interface level to discover an optimal information

load in signals to the brain and the user actions they warrant.
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Chapter 5

Neuracle

So far this dissertation has evaluated key parameters of a bidirectional BCI. To that

end,

1. Chapter One illustrated an agnostic paradigm for building implicit BCIs using

fNIRS, from which one could draw inspiration in the design of a bidirectional

BCI.

2. Chapter Two demonstrated that the agnostic paradigm was inadequate for

building BCIs that generalized beyond a laboratory context, and that BCIs

demanded a physical paradigm.

3. Chapter Three advanced a theory and empirical findings for a physical paradigm

for BCI, oriented around anti-correlated networks.

4. Chapter Four gave an algorithmic specification for this physical paradigm.

Note that in Chapter Four, I cautioned that the assumed relationship be-

tween mental and physical processes was speculative based in large part on my own

introspective efforts. In this chapter, I distribute the software program I built to

rapidly iterate-and-test hypotheses about the relationship between fNIRS data and

real-time changes in my own mental state. My hope is that other researchers will

use this software to understand and improve upon the specification for the physical
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paradigm proposed in Chapter Four. To this end, I present a new software system

called Neuracle.

Neuracle marries open-source Java-based statistics, filtering, and machine-

learning libraries (such as Weka) with an easy-to-use interface for visualizing, tag-

ging, manipulating, storing, and broadcasting data. The system makes the process

of rapidly testing the detectability of a novel state an easy and satisfying endeavor. A

video demonstration of its use can be found at Youtube (https://youtu.be/dKIhXeqwNk8).

A functioning demo can be found running online at (http://sensormining.herokuapp.com/).

Source code can be found at GitHub (https://github.com/samhincks/Neuracle) un-

der the MIT license. Documentation and tutorials are made available within Neur-

acle.

This chapter contains three parts:

1. Section 1 describes a workflow for Neuracle and an evaluation of this work flow

on five participants.

2. Section 2 describes aspects of Neuracle’s implementation.

3. Section 3 describes the outcome of small experiments I have conducted, mostly

on my own brain.

5.1 Self-calibration Validation of Agnostic Neuracles

In this section, I will describe and test the following work flow for calibrating new

physiologically-based machine learning algorithms, and refer to the interface’s three

components: (a) the data-view, which contains representations of active datasets

(preloaded or streaming) and the tools for building machine learning algorithms

from data, (b) the visualization-view, which shows live streams of the data and

meaningful visualizations of it, and (c) the console, which communicates system

output and recognizes over fifty commands for data manipulation, self-calibration,

and more.
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Figure 5.1: The Neuracle Interface

5.1.1 Participants

Five participants (3 female), ranging from ages 20 to 25, partook in self-calibration.

5.1.2 Method

In the experiment, tasks A (data synchronization), C (machine learning), and D

(real-time classification) are completed by the ‘trainer’ (in this case, the experi-

menter), and task B (self-calibration) is completed by the one whose brain is being

calibrated (in this case, the subject). I tested this workflow in an experiment, using

fNIRS 16-channel ISS OxiplexTS: half sensing activation changes in the left dlPFC

and half in the right dlPFC. The two probes are identical, each including source-

detector pairings at 2cm, 2.5cm, 3cm, and 3.5 cm. Raw data values were converted

to (de) oxygenation measurements using Boxy software, and relayed in real-time to

Neuracle.

5.1.3 A: Data synchronization

Neuracle is designed to interact with changing values in a MySQL database. Once

data is confirmed to be streaming into this database, the connection can be opened
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from Neuracle’s console, which places a visual representation of the data in the data-

view of the screen. Double clicking on this object shows a streaming view of the

data in the visualization view.

5.1.4 B: Self calibration

To associate data with estimated mental states, the user must then initialize a set

of trials where task is known by specifying a pattern to describe the condition,

length, and quantity of trials. Neuracle supports built-in calibration for cognitive

workload using the n-back. For the n-back, participants listen to an audio recording

of numbers, with a 2.5s interstimulus interval, and enter these into the system.

An affirming smile appears following correct responses, and a red frown follows

incorrect response; classification accuracy is displayed to the user (and also saved

along with the data, so that trials with many errors can be eliminated from analysis).

In between trials, the user reports their experience of difficulty and focus. For

inductions not yet built into Neuracle, the system merely displays trial transitions,

playing helpful sound alerts if the user is performing the task on another screen.

5.1.5 C: Machine Learning Design and Evaluation

Neuracle provides a suite of tools for involving the human in the machine learn-

ing loop. When training data has been collected, the experimenter can examine

condition-partitioned views of the data (see figure 5.2). These visualizations provide

a preliminary outlook into the quality of the data, suggest outliers that ought to be

excluded, as well as inform filtering and choice of features. Next, the experimenter

can apply bandpass filters or other manipulation techniques (e.g. baseline subtrac-

tion, adaptive filtering or z-scoring); in practice, such manipulation introduces a

new dataset to the view, so that the choice can easily be reverted or compared to.

(For states with consistent inter-participant physiological signatures, macros can be

defined to implement a decided sequence of manipulations.)

The trainer can then define the feature-set; in Neuracle, a feature is specified

by three values (a) descriptive statistic (b) channel (singletons or averaged), and
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(c) time (what subset of the data to examine). There are boilerplate descriptive

statistics (e.g. mean , slope, and the first and second derivative) as well as more

advanced features (e.g. the SAX-distance [84] predictive granger-causality estimates

[54] between two channels (useful for connectivity analyses), and the signal power

at a specific frequency. These features have been selected for processing fNIRS

in the time and frequency domain as well as for connectivity analysis, but apply

generally to any physiological sensor. When a new feature-set is introduced, Neuracle

automatically ranks each feature’s information gain [76], which the experimenter can

view by double clicking its visual representation.

Finally, the experimenter chooses among thirteen Weka machine-learning

algorithms by evaluating them with cross-fold validation; this command shows the

internal leave-one-out classification accuracy for the method, as well as confidence-

thresholded estimates. A prudent experimenter does not wield this specificity to

overfit nor does she flaunt inflated classification scores resulting from exhaustive

trial-and-error. If classification accuracies appear abysmal, Neuracle supports tools

for loading old datasets from other subjects, and either using this in lieu of or in

conjunction to the subjects’ data.

5.1.5.1 D: Realtime classification

When the experimenter has trained the machine learning algorithm, she can instruct

it to classify the streaming data, and request a classification on the last n datapoints,

where n corresponds to the number of points in the trials it was trained on. This

command can then be set to occur at timed intervals with the repeat command, and

classifications streaming from the console can be redirected to a different address

(e.g. a local port in the software in charge of wearable adaptation).

5.1.5.2 Results and Discussion

Participants reported appreciating the presentation of feedback as a green or red

smiley, and also viewing time-series that represented changes of their own brain

activity.
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Figure 5.2: Average change in right-DLPFC oxygenation for all 14 trials of the five
participants (35 0-backs in blue and 35 2-backs in orange)

.

Data manipulation was kept at a minimum to support real-time processing.

For each trial, the slope, standard deviation, and mean were used as input to Weka’s

Logistical Model Tree [81]. No filtering was applied, in part since short term oscilla-

tions reflect heart rate and breathing patterns, which also correlate with workload

[58]. In leave-one-instance-out evaluation, classification accuracies ranged from 50

to 85% (m =65%, s=17%); and when classifications with an associated confidence

measure above 75% were considered (47 of 70 samples), accuracies ranged from 50

to 88% (m =70%, s =17%).

After the experiment, all subject data was appended, and I evaluated the

internal leave-one-out-accuracy (training data included data from the individual and

others). The LMT correctly identified whether a trial was a two or zero back 87.5%

of the time (90% when confident) even though individual subjects had classification

accuracies as low as 50%. This underscores the importance of using many trials

for machine learning, and suggests that future experiments ought to merge current

calibration data with historic data. The most informative feature in this analysis as

measured by information gain [76] was the mean deoxygenated hemoglobin value in

the second half of the trial of a probe sensing the right dlPFC. These results validate

Neuracle’s capability to induce distinguishable cognitive states in its user.
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5.2 Neuracle Implementation

As described in the previous section, the Neuracle interface contains three primary

visual components:

1. The data view, where all loaded datasets appear, hierarchically organized to

reflect the different stages of the data as it is filtered and in other ways ma-

nipulated.

2. The visualization view, which produces different visualizations of the data

object that is clicked, including real-time streams of data and a side-by-side

organization of an experiment’s separate trials, color-coded by condition.

3. The console view, which enables the user to execute commands on the data

objects, including procedures for initiating experiments and labeling data,

training machine learning algorithms, and filtering the data (see figure 5.3).

These view components are implemented using HTML, CSS, and Javascript

and common web frameworks, including jQuery to simplify DOM manipulation and

D3 for visualizations. Neuracle’s implementation follows a model-view-controller

architectural pattern, where the underlying model as all the fNIRS data that is

currently loaded is implemented in a Java back-end. Communication between the

front-end web stack and back-end Java occurs via the Stripes web application frame-

work.

To transmit user intention from the view to the model, the user selects a

data object in the data view and enters a command into the console view. A script

(javainterface.js) first determines whether the command can be parsed locally (in

the web client) or whether it needs access to the real data representations in the

back-end. For commands that entail accessing or changing the data model, the

data object which is to be acted on (the one selected) is known via ActionBeans

in the Stripes framework. With this information, the input parser determines how

to change underlying data representations when the command arrives in the Java
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Figure 5.3: A list of commands implemented in Neuracle, available by typing tab
into the console

Figure 5.4: Neuracle code infrastructure. Omitted code (...) executes an adaptive
filter on the underlying data

back-end, and sends a response back to the Javascript file javainterface.js, which

changes local data in the client, as shown in figure 5.4.
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5.2.1 Adaptive Filtering

The previous section described a workflow for building agnostic neuracles. As shown

in Chapters Three and Four, the essential component for a physical neuracle is the

adaptive filter.

Motion artifacts constitute the major bottleneck for brain monitoring in an

fNIRS-based wearable computer setting. Slight movements can cause a slight de-

coupling between the sensor and the skin. Adaptive filtering, introduced in [135],

is an effective technique for filtering systemic trends in local fNIRS data. Band-

pass filtering successfully removes breathing and heart rate, but it leaves intact

spontaneous low frequency oscillations that do not have neurological origin. These

oscillations would be present in both a shallow and deep source-detector pairing,

and can be eliminated from the deep source-detector pairing with knowledge about

what frequencies were common between them.

Neuracle comes equipped with the software necessary for adaptive filtering.

Specifically, it uses the Widrow-Hoff Least Mean Squared (LMS) algorithm to re-

move common inter-channel oscillations (as detailed in [135]), implemented with an

external library [15]. In this self experiment, I alternated between four trials of sixty

seconds in a passive mind wandering eyes-open state, separating 5 three-minute tri-

als of eyes-closed meditation, in which I attempted to align conscious experience

with breath while recognizing and mindfully discarding any incoming thoughts or

feelings. The purpose of this exercise was to obtain two conditions that maximized

brain-exclusive differences in state in order to test an adaptive filter algorithm under

pristine conditions. These conditions differ by degree of deliberate engagement and

volume of incoming sensory input - features of mind likely to implicate signal only

in brain and not skin.

Figure 5.6 illustrates the presence of a signal invisible without adaptive fil-

tering. The bottom graph shows a dataset in which the frequencies present in a 1

cm source-detector pairing have been subtracted from the frequencies present in a

channel showing a source 3 centimeters apart from the same detector. Since the
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Figure 5.5: The effect of adaptive filtering on left dlPFC oxygenation data. Orange
trials show 60 seconds of controlled eyes-open rest. Blue trials show 180 seconds of
eyes closed meditation

near channel only detects oxygenation oscillations from skin and the far channel

detects oscillation from both skin and brain, an adaptive filter enables the inves-

tigation of an exclusively brain-based signal. In figure 5.6, the adaptively filtered

data shows that meditation involves a reduction in oxygenation content in the left

dlPFC, before it starts to increase in the resting condition. This filter works both

offline and real-time in Neuracle, thereby contributing the enabling software for BCI

in the physical paradigm. As shown in Chapter Four, this discovery period can be

leveraged both to rapidly prototype feasible states and to intelligently search the

forehead for the most effective probe placement. Figure 5.6 shows the commands

needed to execute the adaptive filter on data from within the Neuracle console.

104



Figure 5.6: Interface commands for executing an adaptive filter on selected data

5.3 Self-Experiments for a Physical Paradigm

5.3.1 4-back

In this experiment, I completed a total of fourteen 30 second aural 4-backs (in

orange) and aural 0-backs (in blue), interspersed with 10 second resting periods.

(In an aural n-back, participants repeat the number heard n iterations ago). The

data (which have been adaptively filtered and anchored to start at zero) are shown

in figure 5.7. To solve a 4-back, I sub-vocally rehearse a 4-item mental buffer. When

I hear a new number, I say the first number of the string recently rehearsed, then

immediately repeat the string but with the last string’s second element in the first

position, and the new element in the last position. As long as I keep escalating n, it

is virtually impossible to solve the problem without granting the task the exclusive

province of my attention.

During a 0-back, I do not exert the same level of control over the activity of

my mind. I complete the task, but occasionally my conscious mind is occupied by

other thoughts or feelings.

What is especially interesting with fNIRS self-analysis is the possibility to dis-

sect the trials which break an otherwise coherent pattern. The perfect self-analytical
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experiment is when you have a clear pattern, with exactly one exception. In this ex-

periment, each condition has one exception. For the easy trials (when I was merely

repeating numbers), one trial has the character of the 4-back trials. For the 4-back

trials, one trial has the character of the 0-back trials. The 4-back exception is espe-

cially interesting because it was the last trial in the series and I know exactly how

it mentally unfolded. It was the last trial and I was getting tired. For the first five

seconds, the trial unfolded like every other 4-back trial. I heard 0, then sub-vocally

said zero. I heard 3; then sub-vocally said zero-three. I heard 5; then sub-vocally

said zero-three-five.

But then I heard six, and instead of adding it to a four-item buffer, I said

aloud the first item in my buffer (zero), immediately noticed the mistake and then

fumbled through the remainder of the trial unable to recover. Five seconds into

the trial (approximately when I heard 5), there is a spike in the oxygenation levels

in my left vmPFC. There are three possible explanations for this. First, it could

be entirely coincidental. Second, it is possible that I made the mistake, noticed the

mistake, and the data reflects my frustration. But a subtle clue in the data dismisses

this possible. The break in activation occurs two seconds before my noticing that I

have failed the trial. That suggests the third possibility is true.

Five seconds into the trial, either a rhythmic biological force or a string of

computational association, cemented computation in one of the nodes antithetical

to proper focus. For 6/7 of the 4-back trials, a combination of task difficulty and

mental preparedness enabled me to block out the otherwise near-continuous presence

of my default mode network. For the 7th and last trial, I got ready, doing my

best to sustain focus, but five seconds in, neurological circumstance concentrated

computation in a network of mind that interferes with task-related rumination. This

explanation aligns exactly with the observed data, my private experience of it, as

well as the cognitive science literature.
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Figure 5.7: My brain solving a four-back

5.3.2 Anti-correlated network validation

In another series of self-experiments, I sought to verify the anti-correlated network

findings advanced in Chapter Three using a different fNIRS on myself. Chapter

Three proposes that the strongest anti-correlated network in the brain, indexing

a trade-off between endogenous and exogenous processes, can be measured by one

probe placed by an eyebrow (vmPFC) and one by the ear (temporal lobe). The

Imagent probes used for the verification experiment require the probe to interrogate

bare skin, requiring me to shave part of my head. As illustrated in figure 5.8, the

self-experiments validated the existence of an anti-correlated network between these

two regions and underscored the phenomenology: the PFC probes increase every

time I ‘regress into endogenous thinking’, which includes both mind wandering and

executive thinking, and the temporal lobe probe increases when interest returns to

the world. This self-experiment taught me that the easiest way to control the signal

was to limit visual input. When I cover or close my eyes, the prefrontal cortex probes

increase. When I uncover or open my eyes, the temporal lobe probe increases. I
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Figure 5.8: Anti-correlated networks in myself and a bald friend

verified this experiment on another bald friend.

5.3.3 Two-person eye-gazing

The next experiment was inspired by a finding in psychological literature indicating

that prolonged eye-gazing leads to hallucination [26]. I sat face-to-face with two

friends as we both wore fNIRS interrogating our left hemisphere PFC. We agreed to

pick an eye and stare into it for ten minutes. For me, the hallucinations set in after

about five minutes, and the associated state of entropy is apparent in fNIRS low

frequency oscillations in the PFC. As illustrated in figure 5.9, compared to the first

five minutes, the entropic state entails rapid back-and-forth sharing of data between

the PFC and its anti-correlated exogenous networks, as data is shuttled to many

different regions of the brain.

I cannot speak about the mental life of the three participants who gazed into

my eye, but figure 5.10 indicates unlikely alignment between me and ‘friend two’

as well as me and ‘friend one’ in our second session. ‘Friend one’ and I decided to

repeat the experiment in the meditative state induced by the first session. This time

the PFC signal was flat for both of us in the first five minutes, before it switched in

108



Figure 5.9: My brain during gazing into the eyes of a friend

Figure 5.10: Two friends’ brain data as they look me in the eye

opposite directions for each of us, at right about the same time. 1

5.3.4 Biological Neuracles

As I have worked on the problem of measuring mental states using fNIRS over the

past decade, I have developed an acuity for noticing shifts in my own mental state. I

1 Human connection is an extraordinary phenomenon. It seems like we are living in a sort of
computer, where the underlying physical space contains more dimensions than what the sensorium
would lead us to believe. Although more research is needed, the synchronization between brain
signals shown here (what you may call empathy) may suggest the existence of extrasensory channels
of communication, and a rudimentary informational entanglement between our species.
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can say with certainty when I am in a pure and primal exogenous state, absent both

default mode network and frontoparietal networks. It happens when I dance and

look people in the eye. I can initiate a pure frontoparietal network by rehearsing

items in a working memory buffer, as I did in the 4-back experiment above. And

I can enter a meditative state where I by force of will lock my brain to a sensory

stimuli, such as a sound or a breath.

But I have also learned that it is hard to reliably enter a given network

when I do not control my task. And, as described by the engagement problem

in Chapter Two, it is probably just as hard to reliably induce a given network

in another person. Progress towards building the physical neuracles necessary for

bidirectional BCI thus depends on a change in methodological norms: away from a

study of random brains and towards studies on oneself and those with whom one

can establish a deep and introspective dialogue, oriented a common vocabulary for

describing mental states. Recall the definition of a neuracle from the introduction.

A neuracle is an algorithm which summarizes the state of an information processing

system such as the brain along a set of dimensions. So far, this dissertation has only

considered digital neuracles. The software package Neuracle enables its users to

create both agnostic neuracles and physical neuracles. But its highest aim is to train

biological neuracles. A biological neuracle is a network in the brain that introspects

and reports upon its state.

Methodological thesis: Progress towards bidirectional BCIs depends on the

proliferation of biological neuracles, which is facilitated by the Neuracle software.

Neuracle supports a workflow designed to train biological neuracles. When

the user of Neuracle types ‘experiment’ in the console (a command I adapt to string

together a complex sequence of commands), the system initiates a sequence of songs

and makes so that every time the user presses enter, a label is sent to the back-end.

The biological neuracle is supposed to grant their undivided attention to the music.

But inevitably, endogenous gravity will pull their attention into the default mode

network. The biological neuracle will linger in the default mode network for a period

of time before they notice they are lost in thought. At this point, they will press
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Figure 5.11: Feedback

enter, and send a label to the back-end.

As shown in Figure 5.11, at the end of the trial, Neuracle sends two ques-

tions to the user in order to further label the introspected states of the biological

neuracle. These questions encourage a neutral information processing vocabulary for

describing mental states. The first question attempts to resolve the degree to which

attention was wedded to the music versus the endogenous gravity (or default mode

network thought). The second question resolves the degree to which experience felt

automatic (as though the bottom-up data was controlling thought) versus deliberate

(as though the participant’s agency exerted over cognition).

Although Neuracle was designed to be a web-based platform for intercepting,

processing, and responding to fNIRS data from disparate wearable computers such

as Google Glass, its key affordance may be in providing a live representation of

data, bundled with the necessary filtering tools and machine learning as well as

benchmark interfaces for state induction. In distributing this source code, I hope

to inspire fellow brain-computer interfacing researchers to adopt a somewhat less

conventional but more efficient approach to deciphering brain signals, and join me

as biological neuracles.
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Chapter 6

Electricity as Stimulation in

Bidirectional BCI

This chapter begins the stimulation part of the investigation into a future user inter-

face that measures its user’s mental state and responds not only through a display

but also by sending output directly to the brain, leading to a primitive bidirectional

brain-computer interface. The previous chapters have explored interactive systems

which measured brain state with functional near-infrared spectroscopy (fNIRS) for

communication from user to computer; I now explore transcranial direct-current

stimulation (tDCS) as a channel in the opposite direction. The goal is to integrate

this with brain measurements from fNIRS, so that the stimulation parameters gov-

erning tDCS may be set dynamically to enhance user cognition based on current

mental state and task demands. To do this, the first step is to determine how long

it takes for tDCS to register cognitive effects and how long these effects last. This

chapter presents an experiment that investigates the temporal dimension of tDCS

for this purpose. The findings suggest a long lag-time between the onset of stimu-

lation and any measurable cognitive effect, which may prohibit the effectiveness of

tDCS in a brain-adaptive application.
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6.1 Bidirectional BCIs

Computers support several methods for communicating with the user, but currently

these output methods are constrained by users’ sensory channels. Non-invasive

brain stimulation techniques, such as transcranial direct-current stimulation (tDCS),

might transcend this limitation. Evidence in the psychology literature suggests that

tDCS can temporarily enhance or emphasize aspects of user cognition [24] without

imposing a health risk [19]. tDCS delivers a weak (1 to 2 milliamp) electrical current

to the exterior of the subject’s scalp through an electrode, taking the path to the

nearest cathode, which has been carefully placed so that the current will enter

and alter particular regions of the subject’s brain. tDCS has been used to treat

depression [99], as well as enhance language learning [48], working memory [49]

and attention [53]. With the introduction of tDCS to the standard output arsenal

of HCI, an interactive system may be able to judiciously enhance these abilities

depending on the circumstance and user state.

The study is aimed at a future user interface that uses brain measurement as

input and responds not only with the usual screen output but also by sending output

directly to the brain, suggesting a primitive bidirectional brain-computer interface.

Previous systems have measured brain state with fNIRS for communication from

user to computer [6, 5, 121]; we now explore tDCS for the opposite direction in a

bidirectional brain-computer interface, with fNIRS or another brain monitor as input,

and tDCS as output. Consider the brain-adaptive UAV system in Chapter One [6],

where the system responded to a spike in cognitive workload by decreasing operator

workload. The bidirectional version we propose here would apply tDCS stimulation

briefly, precisely when the measured workload increases and only for the duration

of the workload spike. For such a bidirectional brain-computer interface to work in

practice, the lag time between stimulation and its result should be short. However,

much previous tDCS research, especially experiments aimed at treating depression

[115], have emphasized longer term effects and longer stimulation periods, because

interactivity was not the goal.
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To proceed with an interactive system, the key question is to determine

how long it takes for tDCS stimulation to register cognitive effects and how long

these effects last. We investigate that in this paper with two experiments. At

present, there are many unknowns regarding the relationship between settings of

the device and its associated cognitive effects, making it difficult to gauge whether

the device warrants study and inclusion in next generation user interfaces. An

alarming percentage of experiments [71] fail to elicit significant improvements to

user performance. The consensus is that results vary across person, possibly because

each individual has a different brain and unique rules for how to conduct brain

stimulation. However, deciding to abandon tDCS for that reason is premature,

because the device has not yet been studied interactively. The missing ingredient

for effective tDCS may in fact be a two-way digital ecosystem in which settings can

be dynamically adjusted based on their judged, subject-to-subject effectiveness.

In this chapter, I evaluate the feasibility of a tDCS-based bidirectional brain-

computer interface. I present two experiments aimed at evaluating temporal proper-

ties of tDCS by estimating performance changes in a visuospatial n-back task over

a 15 minute time-course. In the first experiment, I compare 5 minutes of tDCS

stimulation to a placebo condition; and in the second experiment, I compare 10

minutes of stimulation to a placebo condition. I evaluate changes in reaction time

and accuracy for each minute of the experiment.

6.2 Transcranial Direct Current Stimulation

While introducing tDCS brain stimulation into HCI raises safety and ethical ques-

tions, research to date has shown that when stimulation does not exceed 2 milliamps

and lasts shorter than 40 minutes, there have been no cases of irreversible injury

caused by tDCS in a sample of 33,200 sessions [19]. Compared to other brain stim-

ulation techniques, tDCS is easy to use and potentially inexpensive; it already sup-

ports a do-it-yourself community [46]. Although experiments typically use a more

advanced setup, the basic device consists of just two electrodes and a battery to
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energize them. Direct current is then administered through a saline-soaked sponge

or rubber electrode with conductive gel on the subject’s scalp. In a typical setup

(and the one used in this experiment), one electrode is placed over the target of

stimulation, initiating a path for the current to take to a second electrode placed

somewhere nearby. The current is presumed to alter the cortical excitability of

the neurons it interacts with, either depolarizing their membranes and making the

neurons more likely to fire in the case of anodal stimulation, or hyperpolarizing the

membranes, making the neurons less likely to fire in the case of cathodal stimulation

[94].

Given that working memory, compulsivity, and attention are often impaired

in individuals with Attention-deficit/hyperactivity disorder (ADHD) [96], tDCS has

been explored as treatment for individuals with this condition [25]. Experiments

aimed to enhance working memory typically administer anodal stimulation to the

left dorsolateral prefrontal cortex (dlPFC) at the site F3 (in the International 10-20

system [100]) and allow current to flow through a reference electrode at a sym-

metrical location on the brain’s right hemisphere at site F4 [133] (see Figure 6.1).

Many experiments have used this montage to enhance performance at an n-back test

[24]. The present experiment makes use of the same montage and n-back paradigm,

except I investigate shorter stimulation periods and track performance on a minute-

by-minute basis in order to evaluate the usage of tDCS in an interactive system.

6.3 Experiments

6.3.1 Equipment

For measuring brain activity, I used the multichannel frequency domain Imagent

fNIRS device from ISS Inc. (Champaign, IL) to acquire brain data. It uses two

probes, each with four light sources emitting light at 830 and 690 nanometers, and

detectors located between 0.5 and 3.5 centimeters away from these sources. Sampling

frequency was set to 11.79hz.

For altering brain activity, I used Soterix 4x1 HD-tDCS multi-channel stimu-
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Figure 6.1: The n-back task, pictures of the device, and one subject’s fNIRS activity

lation interface (model 4X1-C2 ) to pass electrical currents and the Soterix tDCS-CT

(model 1507-LTE ) to control stimulation and placebo according to a double-blind

protocol.

6.3.2 Experiment 1

Nine undergraduate college students (5 female) participated in the first experiment.

They were monetarily compensated and gave consent at the beginning of the ex-

periment. A university Institutional Review Board approved the experiment. The

experimenter explained the visual n-back task (Figure 6.1) on a whiteboard, and let

the user practice two trials of the 1-back and two trials of the 2-back. For the 1-

back, the user hit the left arrow key if the visual arrangement matched the previous

one and the right arrow key otherwise, and for the 2-back they indicated whether

or not it matched what they saw 2 iterations ago. These keys were marked with

‘YES’ and ‘NO’ with tape on the keyboard. This task was implemented with Neu-
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Table 6.1: Differences in N-Back Accuracy and Reaction Time for each Minute of
Experiment 1

Percent Accuracy Reaction Time (milliseconds)
Sham Real Sham Real

min mean std dev mean std dev p-value mean std dev mean std dev p-value
1 74 24 77 22 0.82909 930 247 808 209 0.4575
2 82 34 93 10 0.58809 701 216 852 250 0.36142
3 80 39 90 14 0.65056 770 261 880 41 0.43568
4 81 28 98 5 0.27549 808 310 811 40 0.98716
5 84 29 88 10 0.84721 651 189 832 166 0.17768
6 82 34 93 15 0.60227 744 201 728 167 0.90031
7 78 32 100 0 0.2236 681 224 691 96 0.9418
8 83 28 93 10 0.52828 669 198 718 149 0.69088
9 80 33 87 13 0.70177 631 218 699 146 0.61433
10 82 29 98 5 0.33798 655 230 651 73 0.97642
11 84 35 95 10 0.57964 637 182 723 109 0.43732
12 80 39 89 16 0.67354 658 159 763 93 0.28151
13 81 28 90 8 0.54059 666 273 620 81 0.75824
14 84 35 90 8 0.76657 590 168 704 149 0.32322
15 78 26 92 5 0.34072 624 201 715 187 0.50996
m 81 31 91 4 0.53000 694 209 746 52 0.65

racle software package for the purpose of recording reaction time and dynamically

labeling fNIRS data. After these practice trials, the experimenter fit the user with

tDCS and fNIRS. This entailed first measuring the size of the subject’s head and

selecting between four cap sizes, and then placing one gel-covered anodal electrode

at site F3 and the other reference electrode at site F4 [100], and then connecting

the electrodes to the Soterix device (see Figure 6.1). Next, the experimenter placed

the two fNIRS probes as near as possible to those sites. (I do not report on any

fNIRS data in this paper for experiment one or two because I was unable to discover

stimulation dependent patterns).

The subsequent experiment proceeded in two phases. In the first phase,

subjects alternated between 30 seconds of the 1-back and 30 seconds of the 2-back,

performing each task 7 times. This served as practice as well as the opportunity to

group participants by the separability of their fNIRS data. In the second phase, the

subject alternated between 40 seconds of the 2-back and 20 seconds of rest, repeating

this 15 times for a total of fifteen minutes. In the n-back task (for experiment 1 and
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2), a new stimulus appeared every 3 seconds, and accuracy and reaction time for

the 40 second task was therefore based on the average of 13 responses.

The experiment used a between subject design. Prior to the experiment, the

participant had been placed in two groups: four in the real tDCS group and five in

the sham group, and neither experimenter nor subject knew the groups. The real

group received 2 milliamps of anodal stimulation at site F3 for 5 minutes. The sham

group received 2 milliamps of stimulation only for 30 seconds, a standard placebo,

since subjects tend to sense when the device turns on but forget about it when it

has been on for a while [24]. Participants began the experiment in parallel to onset

stimulation. Afterwards, the experimenters removed the equipment from the user

and debriefed them.

Table 6.2: Differences in N-Back Accuracy and Reaction Time for each Minute of
Experiment 2

Percent Accuracy Reaction Time (milliseconds)
Sham Real Sham Real

min mean std dev mean std dev p-value mean std dev mean std dev p-value
1 93 7 95 6 0.3028 716 167 719 219 0.9216
2 95 7 95 5 0.7184 851 260 799 203 0.2297
3 94 11 92 9 0.7229 799 193 706 222 0.0629
4 95 8 94 7 0.7001 770 260 783 341 0.8458
5 93 12 94 11 0.5162 731 208 669 205 0.1777
6 91 10 88 15 0.4098 793 249 843 355 0.7569
7 93 10 95 8 0.4657 684 157 684 154 0.7898
8 90 13 95 7 0.1775 751 278 709 217 0.2580
9 88 9 97 6 0.0034** 741 204 639 185 0.0323*
10 94 9 91 10 0.2456 749 230 771 313 0.9678
11 90 9 95 8 0.0631 720 177 628 234 0.0975
12 99 5 95 8 0.2519 762 299 707 277 0.2690
13 93 7 91 12 0.7966 649 157 626 193 0.5743
14 96 7 89 20 0.1930 701 211 715 270 0.9637
15 88 12 89 9 0.7260 624 144 595 155 0.2914
16 94 11 98 4 0.1944 640 198 710 314 0.4852
m 93 7 93 5 0.5049 746 185 706 223 0.3618

Results: I have summarized the results of the first experiment in Table 6.1.

There were no significant effects for the 5-minute stimulation, although stimulated

users trended towards better accuracy and the control group trended towards faster
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speed, hinting more at a speed-accuracy trade-off than cognitive enhancement. Ta-

ble 6.1 shows the mean and standard deviation of the participants’ mean accuracy

and reaction time for each of the fifteen trials under both sham and real condi-

tions, as well as the probability that these averages differed between sham and real

conditions in an independent t-test. Without a clear indication that 5 minutes of

stimulation exerted significant improvements to user performance, we modified our

design and conducted a second experiment.

6.3.3 Experiment 2

Fourteen college students (4 female) participated in the second experiment. Based

on the lack of significant results in the first experiment, we increased stimulation

time from 5 to 10 minutes, and used a within-subject design so that all participants

received both real and sham stimulations. Participants alternated whether or not

they received real stimulation first, and both experimenter and subject were blind

to this information. To allow time for both conditions, we removed the initial fifteen

minute practice period, and participants alternated between 1-backs and 2-backs,

starting with the 1-back. For both real and sham stimulation, participants thus

completed 8 sets of 40-second 1-back and 8 sets of 2-backs with a 20 second rest in

between. In total, each condition lasted sixteen minutes, separated by a five minute

break. Because interference from hair prevented fNIRS measurement in the first

experiment, we placed the two fNIRS probes on the user’s forehead. Apart from

these changes, the second experiment proceeded identically to the first.

Results: I have summarized the results of the second experiment in Table

6.2, which is arranged identically to Table 6.1, and illustrate changes in accuracy

in Figure 6.2 and changes in reaction time in Figure 6.3. Overall, tDCS did not

significantly improve either n-back accuracy or reaction time after 10 minutes of

stimulation. However, there was a significant improvement to n-back accuracy dur-

ing the last minute of stimulation. For minute 9-10, the mean accuracy of the 1-back

in the sham condition was 88% (std = 9) and the mean accuracy in the 10 minute

stimulation condition was 97% (s = 6) (N =13, p = 0.0034 in a paired sample t-test).
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Figure 6.2: Changes in percent accuracy over time, recorded at the end of each
minute.

At minute 9-10, improved accuracy in the 1-back did not come at the expense of

speed. In fact, reaction times in the 10 minute stimulation condition (m = 639 ms,

s = 185 ms) were significantly faster than reaction times in the sham condition (m

= 741 ms, std = 204 ms) (N =13, p = 0.0323 in a paired sample t-test).

Note that since 1 out of 20 tests should be significant with a threshold set

to 0.05, it is hard to verify whether variation has occurred due to chance or not.

If significance thresholds are modified according to a Bonferroni correction, then

the new threshold is 0.05 / 16 = 0.003125 since there are 16 tests, and neither

accuracy nor reaction time are significantly better in the stimulation condition than

in the sham condition, although accuracy at minute 9 misses Bonferonni corrected

significance by less than 0.0003. There are two reasons why the results between

minute nine and ten could be regarded as more valid. First, significance occurs at

the very last minute of stimulation and not in a more random minute during the ten

stimulation minutes or five non-stimulation minutes. Second, the two dependent

variables exhibiting a statistically significant effect according to non-conservative

statistical thresholds refer to the same minute, which is improbable unless there was

a true effect driving enhancement at this minute, especially given the expectation

of a speed accuracy trade-off.
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Figure 6.3: Changes in reaction time measured in milliseconds, recorded at the end
of each minute.

6.4 Discussion

According to these results, tDCS requires at least 9 minutes of stimulation in order to

register an effect. Whether or not effects escalate beyond 10 minutes is an interesting

investigation for future work. For present purposes, the delayed response between

stimulation and effect implies that fNIRS-adaptive stimulation using tDCS may not

work effectively. In the interactive application that motivated the design of this

experiment, a subject would perform a computer task under the interrogation of

fNIRS measurement, and tDCS would apply stimulation to the user when brain

activation measures indicated that cognitive workload had increased. The results

indicate that the user would need to wait at least 9 minutes before enjoying a boost

to cognition, and a brain-adaptive deployment of the technology would therefore be

applicable to tasks with a time span in this range. This is feasible in practice, but

less amenable to study in an experimental setting. The negative result demonstrates

the tDCS thesis of the dissertation.

tDCS thesis: The delay between the administration of tDCS and measurable

changes in user performance exceeds the short timespan between stimulation and

effect needed to establish a feedback loop in a bidirectional BCI.

It is not clear why it takes 9 minutes of stimulation for behavioral effects to

register nor whether this limitation disappears given better settings to the device.
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Individual differences in skin texture, bone density, and brain structure may imply

that standardized stimulation protocols fail to appropriately customize to any given

subject. If that is the case, better settings to device parameters such as intensity,

polarity, duration, and probe location could be discovered and change based on

simultaneous brain measurements [93].

As described in Chapter Four, I envision a design in which fNIRS could

monitor the relative activation of the user’s task-positive and task-negative networks,

which oscillate in inverse correlation to each other depending on whether or not the

user is sensorily immersed or in an introspective mode of cognition [108]. The

back-and-forth activity of these networks could be monitored; a bidirectional brain-

computer interface might discover how to stimulate the user’s brain in order to

maximize task-positive immersion and minimize task-negative introspection when

warranted. A first step in this direction would be to evaluate whether or not fNIRS

detects short term neurobiological reactions to stimulation. I attempted such an

investigation in this experiment, but in the first experiment hair prevented our

device from appropriately measuring the targeted F3 and F4 nodes. I note that

other fNIRS devices (such as Hitachi ETG 4000 ) can solve this problem. In the

second experiment, when probes were placed approximately 3 inches from the site of

stimulation, I did not observe any obvious fNIRS patterns separating the stimulation

and real conditions. However, the experiment found no severe limitations preventing

the two devices from being used in concert. Our target is an interactive system

in which real-time fNIRS measurements are used to modify the tDCS stimulation

parameters for better effectiveness. Our experimental configurations and results

present a first step in support of such a bidirectional brain-computer interface.

Because of the lag time between the onset of stimulation and any measurable

cognitive effect, research into bidirectional brain-computer interfacing might instead

focus on stimulation modalities with a more immediate impact on the user’s mental

state, which is the focus of the next chapter.
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Chapter 7

Autobiographical Postscript

This chapter is not written with the same scientific rigor as previous chapters. I sub-

mit its contents as an instance of the new methodology needed to support research

into bidirectional BCIs in the physical paradigm, and leave a proper specification of

the methodology needed for the study of how to measure and induce desirable men-

tal states to future work. The case studies in this chapter depart from traditional

research in their emphasis on these seven attributes.

1. Qualitative feedback as drawings, speech, and emotions conveyed through

empathic channels.

2. Flexible experimental protocols whose procedures do not intervene with

a natural flow of experimenter-participant interactions.

3. Self experimentation prior to the study of others, so that the author is also

a participant.

4. Use of subjective voice to describe methods and results.

5. Participant-centered experiment design where the primary goal is to pro-

duce results that resonate with the participants at the expense of quantitative

metrics that can be exported to a scientific audience.

6. Empathic experimenters who are tuned to the emotions of the participant

as opposed to a predefined experimental script.
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7. Long term participants who learn over time to introspect and describe

dimensions of their mental life (referred to in chapter 5 as biological neuracles).

7.1 Music Massage as Stimulation in Bidirectional BCI

The problems of cognitive alteration via electrical stimulation and music may have

similar computational solutions, and should thus be studied in concert. In both

cases, variables controlling procedures that output physical events to the brain (as

current or sound) need to be configured such that stimulation is both safe and ben-

eficial to the recipient. For tDCS, these variables describe the location of electrical

probes applying current of a given intensity and polarity for a duration of time. For

music, the variables of interest govern a procedure for generating an array of decibel

amplitudes in the frequency domain.

The collective work of music theory describes rules for producing harmonious

sound, restricting the large space of sound possibilities. For example, a given se-

quence of sounds should be organized around some tonic note (or frequency series)

known as the key of the song, and harmonious sounds are mathematically related

to this fundamental frequency according to some scale of intervals (e.g., the major

or minor scales). Engineers have encoded these rules into digital audio worksta-

tions, enabling an opportunity for auditory bidirectional brain-computer interfacing if

the song is augmented with an interface that allows it to branch between different

versions depending on implicit input from sensors measuring the user’s physiology.

The previous chapters have advanced a Bayesian model, which models brain

activity as a series of hierarchically layered attempts to optimally compress and

learn from sensory data. The brain uses existing models to predict the content of

sensory signals, and propagates information that violates expectation up cognitive

hierarchies where existing models are modified [50]. Music – or sound which obeys

mathematical patterns – may exist as a happy coincidence of the brains proclivity

to direct computation (and associated conscious experience) towards stimuli that

engages its predictive machinery [73]. By this reasoning, the state of the brain
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Figure 7.1: Motion-adapting musical bidirectional BCI

and attention can be modulated by manipulating the user-relative predictability of

sound. This chapter argues that the inherent motion, or changing 3D orientation of

a sound relative to the ears, is an ideal target for adaptation in a bidirectional BCI,

as the music massage thesis.

7.2 Music Massage

Music massage is a group activity, invented by Naomi Hashimoto, that requires

music played from speakers, a music masseur, and a music listener. A typical music

massage setup, and the one evaluated in this paper, includes two music masseurs

with a stereo music speaker setup.

A music massage begins when music masseurs give listeners a menu of pens

in ten different colors. Each color corresponds to a desired mood, and listeners are

told to select the mood they wish to experience. For example, in our color coding,

light blue corresponds to a relaxed, calm, serene feeling. Next, listeners are asked to

assume a comfortable sitting or lying position, and to close their eyes. The masseurs

queue a song in the selected color coding on the music player, and take one speaker

each. When the music begins, the masseurs move the speakers slowly around the

listener’s head at the pace of the music. When the experience is over, listeners
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Figure 7.2: A ticket to receive a music massage

typically report a rich and unusual mental experience (entropy).

It is not clear how to study the mental experiences that emerge during music

massage. In this chapter, I describe a multi-part casy study in narrative form,

leading towards a more formal study of music massage.

7.3 Music Massage at an Art Festival

The case study began at a music and art festival in the woods, where Michael Gabour

and I had registered an art performance. We set up a small stage which included a

hammock off a path in the woods, away from most camps in the festival.

Recruitment: We recruited attendees as we explored the other events of

the festival, handing out tickets (figure 7.2) that included our open hours as well

as a riddle that disclosed our location if solved. A riddle induces higher levels

of consciousness in brains by the same principle as a music massage. Just like high

information sound demands vast networks in the brain in order to decode and render

the musical content in the listener’s sensorium, a good riddle traverses many networks

before its resolution, coercing a richer and more engaged brain state than simply

disclosing our camp’s location.

Methods: When attendees arrived at the camp, we gave them a menu of

colors, symbolized through pens, which denoted different types of music.

1. Light blue: relaxed, calm, serene

2. Dark blue: melancholic, pensive
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3. Light green: natural, wild, instinctive

4. Dark green: chilled out, easy going, socially interested

5. Yellow: warm, snug, glowing

6. Orange: playful, creative, childlike, curious

7. Purple: inspired, full of fantasy, dreamy

8. Brown: assertive, confident, energized

9. Red: passionate, romantic, loving

10. Black: destructive, wicked, animated

To facilitate choice of color, attendees were given a guestbook which included

examples of songs in different color categories. I chose songs across many genres

specifically for the music massage. Appropriate songs contain an implicit motion

pattern which the music masseur detects and renders in a 3D-space as though danc-

ing. The guestbook contained references to my own collection of music satisfying

this criteria at (Spotify/Sam Hincks) and (Spotify/Samulus) as well as music from

more established artists like Hans Zimmer. When they had chosen a color, they

were asked to log personal information in that color to the guestbook. Six columns

requested ‘a name’, ’if you like, an email’, ‘some movie’, ‘a musician with spirit’, ‘a

song everyone knows’, and ‘something the brain does’.

In total, twenty attendees added their names to the guestbook: 2 purple, 2

light blue, 3 red, 3 light green 3 orange, 3 black, 4 dark blue. After the attendee

added information to the guestbook, we directed them to the hammock, and asked

them to put on a blindfold. We played a song in the selected color genre, and we

began to move a speaker slowly around their head at the pace of the music. At the

climax of the song, we sprayed scented water in order to create a richer sensorium

for the listener. When the song finished, we gave them the pen they had selected,

and asked them to contribute a drawing to the guestbook.
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Figure 7.3: Drawings from two attendees after a music massage. (Left illustration:
by Alerisa Rose)

Results: In this performance, we did not attempt to quantify the effect of the

music massage. The feedback suggested that attendees greatly enjoyed the show.

By the third day, demand for a personal music massage outstripped supply, and

we were forced to give a music massage to between fifteen and twenty listeners

simultaneously. Some attendees added messages to the guestbook, including

1. ’I learned to pay attention to the serious/playful spectrum of a thought as a

thought itself’

2. ’I think this is the best thing I’ve ever drawn.”

3. ’Peaceful! Energized! Strong! Proud!”

4. ’This is the best thing that’s happened to me all week!”

5. ’Fearless. The only word I can use to describe this experience. If you are

asking for a multisense experience, you’ve come to the right place. Great

people. Great food. Mind opening gate to who knows...”

Attendees also added great art to the guestbook that may have reflected

their energized states (see figure 7.3).
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7.4 Music Massage on a Synaesthete

The next pilot was focused on one individual, (JG), who has mild synaesthesia

between her visual and auditory senses, a condition that causes the sensorium to

produce visuals for sound. I learned she had this condition after giving her a music

massage. She picked the color orange, and I played an electronic song from my own

collection called Peco (Spotify/Sam Hincks/Peco). After the music massage, she

reported seeing a dark tunnel, leading to a sunset. Before this experience, I had

used the colors as conceptual bindings between emotion and information in different

senses. But I realized after this music massage that there was an opportunity for an

unusual scientific study, testing an interesting possibility for a bidirectional BCI.

Does a song which I label as a particular color (e.g orange) stimulate that

color with greater likelihood than songs in other colors?

With this question in mind, I color-categorized 83 songs from my own col-

lection, and music-massaged 19 of them for JG, without telling her in advance my

color hypothesis. At the end of each song, I asked what she saw in her mind’s eye.

1. Trainbow: This song was lightblue and green, and I saw grass and wind.

2. Ocean Yawning: This song was dark green and purple. I saw a dead forest

with black and white fog. I saw a mountain with one tree, and fog came like a

river. At the end, it was just deep green.

3. Fanguar: I saw big bowl of black and yellow, but it disappeared against my

will. Violet appeared and I saw big waves of dark blue.

4. February Fanguar: Thank you for the light. Red came as a big bird flying into

yellow bowl. They were playing. For a moment, I saw grey as fog. Light came

from piano at start.

5. Eerier Moment Generator: This song had dark blue as clear dominant color,

but no scenes.
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6. The Destormus: I saw some red at the start, but no color later on. It was

like a movie. A storm came with lightning everywhere. Clouds were above my

head, and there were shapes of birds, like Egyptian Gods.

7. Evolving Shades: It was yellow for sure, the whole time, with some light blue

and then forest and fog. Imagine a clock covered by a forest, moving around.

As it approaches, it gets darker. There were squares of yellow surrounding the

clock.

8. Crustacean: There was no color in this song.

9. Revenge: I saw a yellow light and a camera.

10. Demogorgan: Most of the time, there were no colors. Towards the end, I saw

a black mountain.

11. Prediction Error: I saw a human with open arms, a distance away, but then

when I came closer I saw it was a scarecrow in black and white. There was

light blue light but no specific shapes.

12. Lonely Tentacle: There were no shapes, but I saw light blue and orange. There

were two screens, and in one screen I thought I had heard it. In the other, I

saw the village in the evening, and a constellation of stars.

13. Rugged Innards: This was a light shade of red. I saw mountains with peaks.

Later, a package with a ribbon.

14. Ganorak: This was yellow. In the beginning, I saw a tiger.

15. The Cottage: First part I saw violet and fog everywhere. Then my default

mode network came on for a while, and I had thoughts connected with people I

never met. In the last part was a room with greek sculptures that were hugging.

16. Disturbed Drone: It was yellow and brown at start, with a light blue bird.

17. Filthy Lacrimosa: At the beginning, there was yellow, and a bowl of red, with

a little orange and light blue.
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18. Eerier Moment Generator(2nd time): There was so much light blue. There

was a gate, and there were some sculptures, and it was windy, and the wind

was violet. And then I saw a yellow boat on the lake, and I saw pink columns.

19. Evolving Shades (2nd time): It was yellow and light red.

20. Firefly Forest It was light red, with cocoons in all colors, and then blue, with

beautiful ceramic patterns, very detailed. And then black clouds, with faces of

dead people.

21. Living History There were so many elements so it was hard for me to focus.

I saw some yellow paths. There was some intense blue at the end.

22. Mean on Purpose (2nd time): The whole song I saw dark green, and a space,

where I would like to do movements. I saw a valley, and a city.

23. Trainbow (2nd time): In the beginning, there was no color. I saw a face of

an old man engraved in a tree. Then I saw a monument. Then I was in the

default mode network for a while. I saw some light blue in the middle. Then

at the end, there was just a little bit of orange.

24. Rugged Innards (2nd time): I saw a small light in front of doors of a palace

in a distance. It had towers, that were high and sharp. Then my default mode

network came online. Then I saw a red and yellow eagle, and then a butterfly

in the same colors. And finally, a hawk.

Results: It is difficult to draw quantitative conclusions about the relation-

ship between the color-coding of my songs, and the actual color experience in JG’s

blindfolded sensorium. Many of the songs produced multiple colors and scenes for

JG. The astonishing data-point was that 18/19 songs induced rich color experiences

for JG. In 23/24 cases, the music massage produced a visual-auditory sensorium

that was practically free from default mode network activity.

Discussion: The low level of default mode network activity in this pilot may

not merely be the consequence of the information density in the music massage. JG
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may be an anomaly in her level of sensory presence. JG insisted that she was not

an anomaly, but instead obeyed a strict code, controlling the level of stimulation

to her brain. For example, she seldom drinks coffee or alcohol and doesn’t use

social media. JG described how to design life properly, in the color-coding she

had learned from my songs, from reading notes for this dissertation, and from our

personal conversations. If you want to see, she said, you must:

1. Use the rational brain to decide what’s important.

2. Use the default mode network to imagine.

3. Use the meta-reflective brain to let go of thoughts.

4. Behave naturally.

5. Shine your light on the world.

6. Feel love.

7. Abstain from lying.

8. Find people you trust.

9. Play like a child.

10. Acknowledge and control the darkness.

I believed I was already wielding these networks correctly, and so the morning

after she told me this, as I was meditating, I started to look very intensely at my dark

eyes-closed sensorium. For ten minutes, my mind’s eye was black, as it normally

was. But then I saw flickers of light move, creating the sensation that I was floating

in space. The lights gathered together, and then I felt a huge explosion, as though

I was looking at the big bang, and I ended up lying on a big field of grass at night,

looking at the dark silhouettes of trees beneath a deep blue sky full of stars. That

same sky full of stars now re-occurs frequently when I close my eyes and am able to

silence by default mode network.
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I had my first synaesthetic episode a month after my first eyes-closed color

experience. This time JG was giving me a music massage in a sauna. The heat

exposure and entropy of the sauna probably dialed down my naturally high level of

default mode network activity. As my eyes were closed, my sensorium visualized a

clear light blue pool with detailed orange and green patterns at the bottom. When

the song reached its climax, JG poured water on the sauna’s rocks, producing heat

and steam in the room, as well as loud white noise that released energy in the

song. In my sensorium, the previously still pool became disturbed with drops of

water splashing on the surface, producing ripples. I started this part of the music

massage investigation painting sound pictures in JG’s sensorium, and she finished

it by painting pictures in mine.

The theoretical ideas from Bayesian cognitive science, the testimony of at-

tendees at the art festival and the rich color experiences of JG demonstrate that

motion in sound functions as an auxiliary parameter to music that can be adjusted

to manipulate the degree to which it affects brain activity. I intend to move for-

ward with a more formal scientific investigation of music massage. But for the same

arguments that support the methodological thesis, I am held back by the problem

of studying individual phenomenology on a random population, using quantitative

metrics. New methodology is needed.
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Chapter 8

Conclusion

The chapters of this dissertation have unfolded the essential theoretical/empirical

foundation (Chapters 1, 2, and 3), algorithms (Chapter 4), software infrastructure

(Chapter 5), methodology (Chapter 5) and interfaces (Chapter 6 and 7) for building

bidirectional BCIs. The result is the specification of a technology for altering the tem-

perature level of consciousness in a brain by adjusting information in a bidirectional

feedback loop with a measurement of fNIRS-detected anti-correlated networks. If

the theoretical foundation is accurate, the reciprocal see-saw relationship between

oxygenation levels in the prefrontal cortex and temporal lobe reflects competitive

activity between two independent computers, and fluctuations in this signal reflect

the degree to which cognitive Energy crystallizes a more endogenous versus exoge-

nous orientation and top-down versus bottom-up directionality. A bidirectional BCI

can control its user along these dimensions by controlling the predictability of infor-

mation to the brain (such as the motion of music), using physical neuracles to score

the real-time effect of brain stimulation and optimize the temperature of the brain.

To reach this conclusion, the dissertation has opened several threads that

are bound together by the unity thesis. Entropy, the mathematical formulation of

order and chaos, gives a principled way to understand the meaning of fluctuations

in anti-correlated networks, providing the foundation for physical neuracles, and a

path towards a physical paradigm for BCI.

Unity thesis: The spectrum of states in between the brain’s stable and novel
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Figure 8.1: Physical Paradigm for Bidirectional BCI

configurations have differentiable physical neural signatures (human-hardware com-

ponent) that are mirrored in an introspectively observable mental workspace (human-

neuracle component), which can be monitored by neuracles classifying physiologi-

cal changes associated with the activation of neural networks (computer-neuracle

component), and which can be controlled by adjusting the amount of information

transmitted to the brain in a user interface (computer-interface component).

8.1 The Unity Thesis

The unity thesis has four components, and figure 8.1 illustrates how these com-

ponents can be organized along two axes: the first portraying whether or not the

component exists at a hardware or software level, and the second resolving whether

the component pertains to the human or the computer part of the cybernetic loop.

The human-hardware component of the unity thesis is a straightforward

consequence of the resistance to the second law of thermodynamics necessary to the

brain and other biological systems that find stable equilibria with the environment

for the duration of their existence. Any salient object of the Universe erects a Markov
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blanket shielding an internal memory space from the environment. Those objects

that survive and replicate necessarily contain internal memory spaces that predict

the causes of inputs registered in the Markov blanket. They resist entropy stimulated

by the inputs by modifying the internal memory space for better prediction over

time, as well as by changing output effectors so that inputs better agree with a

model of the world in which the object is anticipated to survive and replicate.

In humans, the exogenous internal memory space is a consciously intro-

spectable user interface in five primary sense modalities, called the sensorium. The

sensorium generates an illusion (or set of explanations in its hierarchically super-

ordinate endogenous structures) as existing outside the brain in a common space

available to other humans. But the sensorium is generated from within and from

the top-down. Approximately half of the time, the signals mediated from the outside

world do not contain enough information to demand more than default computa-

tion in the exogenous networks responsible for producing the sensorium [77], and

as a result consciousness does not fixate there. Instead, the Energy fixates in some

endogenous network where information processing also flows in two directions and

is at any point either dominated from the top-down or bottom-up or otherwise at a

stable equilibrium between these dueling factions, in which case the energetic level

that is witnessed in the mental workspace is low. Conscious attention fixates where

there is Chaos in humans, but probably also in animals, possibly in plants, and po-

tentially also in ‘inanimate’ objects like rocks that do not process much information

at our time-scale insofar as it manifests in our sensorium.

The human-neuracle component of the unity thesis asserts that an appro-

priately trained human (what Chapter Five refers to as a biological neuracle) can

reliably witness and report upon the current temperature level of their consciousness.

Biological neuracles can further decompose mental states with higher than normal

temperature levels into directionality and origin dimensions depending on whether

the flow of information proceeds primarily from the bottom-up or top-down (direc-

tionality) and is acting on a data source that originates from the environment or the

repository of data stored in memory and DNA (origin). Low temperature states can
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simply be called default states, where processing oscillates haphazardly and auto-

matically between historical memory, present input, and future simulation: between

a primitive exogenous brain responsible for the sensorium and a quintessentially

human endogenous brain responsible for linguistic mind wandering.

This model of conscious attention, as Energy that fixates in the network

exhibiting most Chaos, gives a physical approach for decoding cognitive dimen-

sions (including temperature, origin, and directionality) from the competitive and

cyclical activity of anti-correlated networks measured with fNIRS. Chapter Four

released a working hypothesis for how to build a physical neuracle on the basis of

anti-correlated networks discovered in Chapter Three in partial fulfillment of the

computer-neuracle component of the unity thesis.

The algorithm depends on three probes, measuring oxygenation levels at the

dorsolateral (dlPFC) and ventromedial prefrontal cortex (vmPFC) and the tem-

poral lobe (TL). The three probes form two anti-correlated networks (vmPFC-TL

and dlPFC-TL). Whichever of the two networks has higher anti-correlation, indicat-

ing computation in one node that depends on the other, is assigned as the master

network. Directionality is computed from the setting to master network, so that

dlPFC-TL ← top-down and vmPFC-TL ← bottom-up. Origin is set as whichever

of the two probes in the master network has a higher slope, so that it is set to

exogenous when the TL-probe increases in measured oxygen faster than the node

placed at the prefrontal cortex. In Chapter Four, eleven other dimensions are also

extracted, including entropy, which is the level of surprise with the current set-

tings of dimensions given their history. This thirteenth dimension depends on the

twelve other dimensions, and may be the best approximation for the temperature of

consciousness in a brain.

Because of fundamental difficulties that have permeated science and philoso-

phy since their inception, the proposed dimensions remain hypothetical. These hy-

pothesis are inspired by a multi-disciplinary literature review, an evaluation of fNIRS

data collected from hundreds of brains, and parallel introspection and brain mea-

surement using customized software. Chapter Five gives the software program Neu-
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racle, which is a user interface for rapid hypothesis-testing and self-experimentation.

Neuracle gives its users a set of procedures for manipulating the state of their brain

and observing the associated change in fNIRS signals shortly after the user’s brain

generated those signals. It gives the tools to rapidly build, refine, and evaluate

both physical and agnostic neuracles, and to output their real-time classifications on

a port, which brain-computer interfaces can use to adjust aspects of interaction to

the user’s benefit. My hope is for other researchers to use the software to improve

upon the dimensionalization in Chapter Four, and help develop a methodology that

supplies a tighter bridge between the software and hardware levels referenced in

figure 8.1.

The final chapters focus on the computer-interface component of the unity

thesis. They explore how to control the predictability of input to the brain to

augment cognition. The placement of Chapter Six at the end of the dissertation

may however be misleading since the design of the experiment does not reflect the

knowledge accrued in Chapters Two, Three, and Four. The thinking of Chapter Six

is based on the limited brain dimensionalization of Chapter One, needed to support

the agnostic paradigm. Chapter Six concluded that tDCS is not a worthwhile method

for stimulating the brain towards augmented working memory capacities since there

is a long delay before stimulation registers any improvement in n-back performance.

But tDCS may still prove effective for bidirectional BCIs that augment other aspects

of cognition. Electrical stimulation to the brain can relieve symptoms of depression

[99], which is not surprising in a Bayesian brain. Depression manifests in brains that

are stuck in default states, thereby performing little computation, and exhibiting

low Energy. A jolt of electricity is another semi-random piece of information for

the brain to process, destabilizing its default state. A revised tDCS study would

relax the need to obtain measurable performance benefits and focus on measuring

dependent variables associated with the temperature of mental experiences for the

participants.

Embracing a qualitative approach for studying bidirectional BCIs, Chapter

Seven examined music as sound information to the brain that occupies a delicate
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and aesthetic sweet-spot between order and disorder and in so doing elevates and de-

fines the temperature of experience. The mathematical structure of music, which is

designed to absorb the brain’s sustained attention, may be a sort of reverse engineer-

ing of evolved brain structures that enable the brain to decode the 3D-orientation

and motion of regular objects in time and space. (This relationship may be what

causes us to dance to music: the sound contains an implicit motion sequence, which

the dancer embodies.)

Chapter Seven proposed a new way to embody music, where a music masseur

moves stereo speakers around a listener’s head in synchrony with the sound’s inher-

ent motion sequence. The Bayesian grounding of this dissertation predicts that

music heard through music massage dictates more processing in the exogenous net-

works responsible for generating the sensorium. Crucially, there is mutual informa-

tion between the changes in the sound’s pitch and 3D origin, and so music massage

does not fragment attention between multiple networks. In the listener’s sensorium,

music massage manifests as a singular object of perception, unified in one large sen-

sory network critically poised between order and disorder. This chapter evaluated

music massage in two pilot studies: one performance at an arts festival and one

focused study on a mild synaesthete.

In these case studies, a biological neuracle approximates the role of the com-

puter neuracle and computer interface components of a full-fledged sound-

based bidirectional BCI, as shown in 8.2. Acting as a wizard of Oz bidirectional BCI,

the biological neuracle strove to make each exchange with the eventual listener pro-

vide the right amount of information to unhinge their default mode of operation

without making them uncomfortable or self aware. During the music massage, the

biological neuracle tuned their internal state to the emotions created by the music,

presumed to be shared with the listener, and adjusted the intensity of listener’s

sensorium appropriately. When the experience was over, the biological neuracle pa-

tiently created conditions for the listener to render the experience that unfolded

in language or visual symbolism. The art, testimony, and rich sensoria described

in Chapter Seven underscores the effectiveness of the music massage, the utility of
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Figure 8.2: Bidirectional BCI Wizard of Oz Experiment

motion as an auxiliary parameter for adaptation in a bidirectional BCI, and the

interface component of the unity thesis. Music massage also appears useful for

creating more biological neuracles by encouraging listeners to pay attention to and

render their sensoria.

8.2 Future Research

A technological implementation of a music massage bidirectional BCI would be able to

detect when the listener’s brain regressed into a default mode of operation. At this

point, the information load of the inputs producing the sensorium could increase:

more motion, sound closer to the ears, release of smells, and touch. Unfortunately,

music massage does not work as effectively when the sound moves in headphones,

demanding many speakers to be arranged in a large ambisonic dome. A wise follow-

up experiment would rely on a biological neuracle that bases decisions for how to

adapt the listener’s sensorium on the real-time classification of a physical neuracle.

Out of ethical considerations, any technology that is developed in this paradigm

must recognize the ongoing effect of ubiquitous information on contemporary civi-
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lization. There is a palpable attention-deficit epidemic, and those of us who have

championed effortless and pervasive human-computer interaction have a duty to

help reshape the technological landscape. Modern technologies like the Internet,

smart phone, and social media are deleterious to human attention for two primary

reasons. First, notifications, videos, text messages, and other digital inputs to the

brain that successfully usurp its attention pack a high informational punch, ele-

vating the baseline that some natural input to the brain must exceed to grab the

full province of the brain’s exogenously oriented attention. Second, the extended

tribe imagined in a globalized civilization in dialogue through an all-encompassing

Internet creates an extended set of concerns for a default mode network optimized

for primate style social cognition.

It is unclear whether bidirectional BCIs can help mend the wounds wrought

by hyper-connectivity or whether these interfaces will unfold as more digital super-

stimuli, exploiting frailties in human attention with scientific precision. For this

reason, I urge scientific supervision over the technology enabled by the knowledge

gathered in this dissertation.

I disseminate the knowledge and software in the hope of creating more bio-

logical neuracles. We are tired information processors that have cultivated cognitive

and behavioral habits that suppress the Energy and strive to unshackle the chains

of the default mode network in a quest to feel unity with the Source.
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